Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (17): 3311-3322.doi: 10.3864/j.issn.0578-1752.2017.17.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Comprehensive Evaluation and Indicators of the Drought Resistance of Different Genotypes of Fagopyrum tataricum at Seedling Stage

LU ZhiJuan1, ZHANG YongQing1, 2, ZHANG Chu1, LIU LiQin1, YANG ChunTing1   

  1. 1College of Life Sciences, Shanxi Normal University, Linfen 041004, Shanxi; 2 College of Geographical Sciences, Shanxi Normal University, Linfen 041004, Shanxi
  • Received:2017-04-10 Online:2017-09-01 Published:2017-09-01

Abstract: 【Objective】Fagopyrum tataricum not only has rich nutritional and medicinal values, but also has great physiological characteristics such as relatively high tolerance and strong adaptation ability to cold and barren conditions. There is a significant difference in resistance to drought stress among different genotypes of F. tararicum. Study of drought resistance characteristics of F. tataricum, screening of the materials of high tolerance genotypes and identification of indicators of drought resistance, and building a mathematic model for appraising the drought resistance not only can provide a foundation for evaluating the drought resistance and selection of genotypes, but also can provide a theoretical basis for germplasm breeding in cold areas of Loess Plateau. 【Method】Multiple indices of seedlings, including agronomic traits and physiological characteristics, were measured in the normal supply and drought stress with nine F. tataricum genotypes. Subordination function method, principal component analysis and clustering analysis were used to synthetically evaluate the drought resistance of different F. tataricum genotypes. Moreover, stepwise regression analysis was used to establish the optimal regression equation that could forecast and identify the drought resistance ability of F. tataricum. 【Result】Drought stress has an obvious effect on the indexes of F. tataricum at seedling stage. Results of difference of testing indices showed that the overground index, root dry weight, root activity, root morphology index, soluble protein contents, relative water content, chlorophyll content and leaf fluorescence parameters under drought stress were obviously decreased compared with the control group. Compared with the control group, drought stress not only resulted in the decreases of aboveground and root characteristics, root activity, soluble protein contents, leaf relative water and chlorophyll content, Fm and Fv/Fm, but also resulted in the increase of the activities of superoxide dismutase (SOD) and peroxidase (POD), the contents of malonaldehyde (MDA) and soluble sugar, and leaf Fo. Besides, the root-shoot ratio of drought tolerance genotypes showed a rising trend, while the intermediate and drought-intolerant genotypes showed a declining trend. The principal component analysis turned 21 single indices into three independent comprehensive indices (accumulative contribution of 87.30%). The principal component 1 mainly reflected the information of biomass, root morphology, and leaf fluorescence parameters etc. The principal component 2 mainly reflected the information of root activity, root enzyme activity and osmotic adjustment substances etc. While the principal component 3 mainly reflected the information of aboveground morphology, partial leaf and root physiological characteristics. Nine F. tataricum genotypes were divided into three categories by clustering analysis: drought-tolerant type, middle type, and drought-intolerant type. In order to predict the drought resistance of each genotype and build a mathematical evaluation model, D values and drought tolerance index of various indexes were taken as the dependent variable and independent variable, respectively, for the stepwise regression analysis. By establishing an optimal regression equation, eight influential indices for drought resistance, including plant height, stem diameter, root-shoot ratio, root activity, main root length, MDA content, Fo, and leaf relative water content, were selected. The predictive values of drought tolerance of nine F. tataricum had a significantly correlation with D values (R2=0.988**), which showed a certain accuracy and efficiency to forecast the F. tataricum drought-resistance by using this equation. And the identification work could become easier when measuring these indexes selectively. 【Conclusion】Drought stress has significant influence on each index during seeding stage of F. tataricum. According to the cluster trend diagram, the tested categories can be divided into three types: drought tolerance type (including Diqing kuqiao, Xinong 9909, Qitai farmers), intermediate type (including Guangku 1, Qianku 6 and Yunqiao 1), and non drought-intolerance type (including Duoyuan kuqiao, Heifeng 1 and Xiqiao 1). The study selected the nine indexes including plant height, stem diameter, root-shoot ratio, root activity, main root length, MDA content, Fo, and leaf relative water content, which could rapidly identify the drought resistance of F. tataricum, and the predictive values of drought tolerance is significantly correlated with D values (R2=0.988**).

Key words: fagopyrum tataricum, screening drought resistance index, principal component analysis, clustering analysis, regression analysis

[1]    Calderónmontano J M, Burgosmoron E, Pérezguerrero C, Lópezlázaro M. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 2011, 11(4): 298-344.
[2]    Gurevitch J, Scheiner S M, Fox G A. The Ecology of Plants. Second Edition. Sunderland, MA, USA: SinauerAssociates Inc, 2006: 2-30.      
[3]    汤章城. 植物对水分胁迫的反应和适应性—I.抗逆性的一般概念和植物的抗涝性. 植物生理学通讯, 1983(3): 24-29.
TANG Z C. Plant responses and adaptability to water stress─I.The general concept of resistance and the flood resistance of plants. Plant Physiology Communications, 1983(3): 24-29. (in Chinese)
[4]    张永清, 苗果园. 水分胁迫条件下有机肥对小麦根苗生长的影响. 作物学报, 2006, 32(6): 811-816.
ZHANG Y Q, MIAO G Y. Effects of manure on root and shoot growth of winter wheat under water stress. Acta Agronomica Sinica, 2006, 32(6): 811-816. (in Chinese)
[5]    Deng L Q, Zhang K, Huang K F, Chen Q F. RADP analysis for genetic diversity of nineteen common and tartary buckwheat varieties. Agricultural Science & Technology, 2011, 12(1): 65-69.
[6]    徐笑宇, 方正武, 杨璞, 高金锋, 王鹏科, 冯佰利. 苦荞遗传多样性分析与核心种质筛选. 干旱地区农业研究, 2015, 1(1): 268-277.
XU X Y, FANG Z W, YANG P, GAO J F, WANG P K, FENG B L. Genetic diversity analysis of tartary buckwheat and selection of core collections. Agricultural Research in the Arid Areas, 2015, 1(1): 268-277. (in Chinese)
[7]    汪灿, 胡丹, 杨浩, 阮仁武, 袁晓辉, 易泽林, 宋志成, 赵丹. 苦荞主要农艺性状与产量关系的多重分析. 作物杂志, 2013(6): 18-22.
WANG C, HU D, YANG H, RUAN R W, YUAN X H,YI Z L, SONG Z C, ZHAO D. Multiple analysis of relationship between main agronomic traits and yield in tartary buckwheat. Crops, 2013(6): 18-22. (in Chinese).
[8]    李瑞国, 高冬丽, 柴岩, 胡银岗, 高金锋, 安守强. 苦荞资源农艺性状因子聚类分析. 干旱地区农业研究, 2007, 25(6): 80-84.
LI R G, GAO D L, CHAI Y, HU Y G, GAO J F, AN S Q. Factor and cluster analysis of tartary buckwheat resources. Agricultural Research in the Arid Areas, 2007, 25(6): 80-84. (in Chinese)
[9]    Huang K F, Shi Z, Song Y X, Han C H, Chen Q H. Research on variation in sucrose content among different tartary buckwheat genotypes. Agricultural Science & Technology, 2011, 12(2): 211-213.
[10]   刘琴, 张薇娜, 朱媛媛, 胡秋辉. 不同产地苦荞籽粒中多酚的组成、分布及抗氧化性比较. 中国农业科学, 2014, 47(14): 2840-2852.
LIU Q, ZHANG W N, ZHU Y Y, HU Q H. Comparison of the constitution, distribution, and antioxidant activities of polyphenols from different varieties buckwheat seed produced from different regions of China. Scientia Agricultura Sinica, 2014, 47(14): 2840-2852. (in Chinese)
[11]   Pei Y Q, Qiang W, Fang S. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. International Journal of Food Science & Technology, 2010, 45(5): 951-958.
[12]   葛维德, 赵阳, 刘冠求. 播种期对苦荞主要农艺性状及产量的影 响. 杂粮作物, 2009, 29(1): 36-37.
GE W D, ZHAO Y, LIU G Q. The effects of planting period on the main agronomic character and yield of tartary buckwheat. Rain Fed Crops, 2009, 29(1): 36-37. (in Chinese)
[13]   万丽英. 播种密度对高海拔地区苦荞产量与品质的影响. 作物研究, 2008, 22(1): 42-44.
WAN L Y. Effect of planting density on yield and quality of tartary buckwheat in high altitude region. Crop Research, 2008, 22(1): 42-44. (in Chinese)
[14]   田秀英, 李会合, 王正银. 施硒对苦荞N, P, K营养元素和土壤有效养分含量的影响. 水土保持学报, 2009, 23(3): 112-115.
TIAN X Y, LI H H, WANG Z Y. Effect of Se application on contents of nitrogen, phosphorus and potassium in tartary buckwheat and content of available nutrients in soil. Journal of Soil and Water Conservation, 2009, 23(3): 112-115. (in Chinese)
[15]   宋毓雪, 郭肖, 杨龙云, 陈庆富, 黄凯丰. 不同氮磷钾肥料处理对苦荞籽粒充实度及产量的影响. 浙江农业学报, 2014, 26(6): 1568-1572.
SONG Y X, GUO X, YANG L Y, CHEN Q F, HUANG K F. Effects of different NPK treatments on the yield and plumpness of tartary buckwheat. Acta Agriculturae Zhejiangensis, 2014, 26(6): 1568-1572. (in Chinese)
[16]   张强, 李艳琴. 基于矿质元素的苦荞产地判别研究. 中国农业科学, 2011, 44(22): 4653-4659.
ZHANG Q, LI Y Q. The origin discrimination of tartary buckwheat based on the mineral elements. Scientia Agricultura Sinica, 2011, 44(22): 4653-4659. (in Chinese)
[17]   Lim J H, Park K J, Kim B K, Jeong J W, Kim H J. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chemistry, 2012, 135(3): 1065-1070.
[18]   胡丽雪. 苦荞幼苗对铅铝胁迫的生理生化反应及其矫治[D]. 贵州: 贵州师范大学, 2014.
HU L X. The physiological and biochemical response of buckwheat seedlings to lead &aluminum stress and rectification of its toxicity[D]. Guizhou: Guizhou Normal University, 2014. (in Chinese)
[19]   董新纯, 赵世杰, 郭珊珊, 孟庆伟. 增强UV-B条件下类黄酮与苦荞逆境伤害和抗氧化酶的关系. 山东农业大学学报(自然科学版), 2006, 37(2): 157-162.
DONG X C, ZHAO S J, GUO S S, MENG Q W. Role of flavonoids on stress injury and antioxydative enzymes in Fagopyrum tataricum seedings under enhanced UV-B radiation. Journal of Shandong Agricultural University (Natural Science), 2006, 37(2): 157-162. (in Chinese)
[20]   陈鹏, 张德玖, 李玉红, 陈涛. 水分胁迫对苦荞幼苗生理生化特性的影响. 西北农业学报, 2008, 17(5): 204-207.
CHEN P, ZHANG D J, LI Y H, CHEN T. Effect of drought stress during seedling stage on physiological and biochemical traits of tartary buckwheat. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(5): 204-207. (in Chinese)
[21]   Yao Y N, Xuan Z Y, Li Y, He Y M, Korpelainen H, Li C Y. Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat (Fagopyrum tataricum) under field conditions. European Journal of Agronomy, 2006, 25(3): 215-222.
[22]   李春艳, 张宏, 马龙, 李诚. 冬小麦苗期氮素吸收利用生理指标的综合评价. 植物营养与肥料学报, 2012, 18(3): 523-530.
LI C Y, ZHANG H, MA L, LI C. Comprehensive evaluation on physiological indices of nitrogen absorption and utilization in winter wheat at the stage. Plant Nutrition and Fertilizer Science, 2012, 18(3): 523-530. (in Chinese)
[23]   李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22(10): 1190-1199.
LI Q, LUO Y H, TAN J, KONG F L, YANG S M, YUAN J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivar at seeding stage. Chinese Journal of Eco- Agriculture, 2014, 22(10): 1190-1199. (in Chinese)
[24]   白志英, 李存东, 孙红春, 赵金锋. 小麦代换系抗旱生理指标的主成分分析及综合评价. 中国农业科学, 2008, 41(12): 4264-4272.
BAI Z Y, LI C D, SUN H C, ZHAO J F. Principal component analysis and comprehensive evaluation on physiological indices of drought resistance in wheat substitution. Scientia Agricultura Sinica, 2008, 41(12): 4264-4272. (in Chinese)
[25]   罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻, 陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选. 作物学报, 2014, 40(7): 1259-1273.
LUO J J, OU Q M, YE C L, WANG F, WANG Y Z, CHEN Y L. Comprehensive valuation of drought resistance and screening of indices of important flax cultivars. Acta Agronomica Sinca, 2014, 40(7): 1259-1273. (in Chinese)
[26]   张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 第4版. 北京: 高等教育出版社, 2009: 32-227.
ZHANG Z L, QU W J, LI X F. Experimental Instruction of Plant Physiology. 4th ed. Beijing: Higher Education Press, 2009: 32-227. (in Chinese)
[27]   兰巨生. 农作物综合抗旱性评价方法的研究. 西北农业学报, 1998, 7(3): 85-87.
LAN J S. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-Occidentalis Sinica, 1998, 7(3): 85-87. (in Chinese)
[28]   孟庆立, 关周博, 冯佰利, 柴岩, 胡银岗. 谷子抗旱相关性状的主成分与模糊聚类分析. 中国农业科学, 2009, 42(8): 2667-2675.
MENG Q L, GUAN Z B, FENG B L, CHAI Y, HU Y G. Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet (Setaria italica). Scientia Agricultura Sinica, 2009, 42(8): 2667-2675. (in Chinese)
[29]   尹利, 逯晓萍, 傅晓峰, 李美娜, 郭建. 高丹草杂交种灰色关联分析与评判. 中国草地学报, 2006, 28(3): 21-25.
YIN L, LU X P, FU X F, LI M N, GUO J. The grey relation analysis and evaluation of hybrid pacesetter. Chinese Journal of Grassland, 2006, 28(3): 21-25. (in Chinese)
[30]   Singh U, Ladha J K, Castillo E G, Punzalan G, Agnes Padre, Duqueza M. Genotypic variation in nitrogen use efficiency in medium and long duration rice. Field Crops Research, 1998, 58(1): 35-53.
[31]   张美俊, 乔治军, 杨武德, 冯美臣, 肖璐洁, 王冠, 段云. 不同糜子品种对低氮胁迫的生物学响应. 植物营养与肥料学报, 2014, 20(3): 661-669.
ZHANG M J, QIAOA Z J, YANG W D, FENG M C, XIAO L J, WANG G, DUAN Y. Biological response of different cultivars of millet to low nitrogen stress. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 661-669. (in Chinese)
[32]   王军, 周美学, 许如根, 吕超, 黄祖六. 大麦耐湿性鉴定指标和评价方法研究. 中国农业科学, 2007, 40(10): 2145-2152.
WANG J, ZHOU M X, XU R G, LÜ C, HUANG Z L. Studies on selecting and evaluation methods for barley’s (Horedum vulgare L.) waterlogging tolerance. Scientia Agricultura Sinica, 2007, 40(10): 2145-2152. (in Chinese)
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[3] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[4] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[5] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[6] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[7] SONG ChuJun,FAN FangYuan,GONG ShuYing,GUO HaoWei,LI ChunLin,ZONG BangZheng. Taste Characteristic and Main Contributing Compounds of Different Origin Black tea [J]. Scientia Agricultura Sinica, 2020, 53(2): 383-394.
[8] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
[9] ZHU Yan,CAI HuanJie,SONG LiBing,SHANG ZiHui,CHEN Hui. Comprehensive Evaluation of Different Oxygation Treatments Based on Fruit Yield and Quality of Greenhouse Tomato [J]. Scientia Agricultura Sinica, 2020, 53(11): 2241-2252.
[10] ZHAO LiLi,LI LuSheng,CAI HuanJie,SHI XiaoHu,XUE ShaoPing. Comprehensive Effects of Organic Materials Incorporation on Soil Hydraulic Conductivity and Air Permeability [J]. Scientia Agricultura Sinica, 2019, 52(6): 1045-1057.
[11] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[12] CHEN ErYing, QIN Ling, YANG YanBing, LI FeiFei, WANG RunFeng, ZHANG HuaWen, WANG HaiLian, LIU Bin, KONG QingHua, GUAN YanAn. Variation and Comprehensive Evaluation of Salt and Alkali Tolerance of Different Foxtail Millet Cultivars Under Production Conditions [J]. Scientia Agricultura Sinica, 2019, 52(22): 4050-4065.
[13] SHI TianTian, HE JieLi, GAO ZhiJun, CHEN Ling, WANG HaiGang, QIAO ZhiJun, WANG RuiYun. Genetic Diversity of Common Millet Resources Assessed with EST-SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(22): 4100-4109.
[14] BAI YiXiong,YAO XiaoHua,YAO YouHua,WU KunLun. Difference of Traits Relating to Lodging Resistance in Hulless Barley Genotypes [J]. Scientia Agricultura Sinica, 2019, 52(2): 228-238.
[15] SHI FangFang, ZHANG QingAn. Effects of Different Citric Acid Solutions on the Quality of Apricot Kernels During Debitterizing Mediated by Ultrasound Irradiation [J]. Scientia Agricultura Sinica, 2019, 52(17): 3034-3048.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!