Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (17): 3300-3310.doi: 10.3864/j.issn.0578-1752.2017.17.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Continuous Flooding on Cadmium Absorption and Its Regulation Mechanisms in Rice

CHEN JiangMin 1, 2, YANG YongJie2, HUANG QiNa2, Hu PeiSong2, TANG ShaoQing1, 2, WU LiQun3, WANG JianLong1, 3, SHAO GuoSheng2   

  1. 1 Hunan Agriculture University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha 410128;  2China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 3114003Hunan Jinjian Seed Industry Science & Technology Co., Ltd., Changsha 410128
  • Received:2016-12-16 Online:2017-09-01 Published:2017-09-01

Abstract: 【Objective】The objective of this experiment is to study the effects of continuous flooding on cadmium (Cd) uptake in rice. By analysis of alteration of soil available Cd, plant Cd content and Cd uptake related gene expression under continuous flooding condition in different Cd accumulation rice varieties, further to reveal the effects and detail regulation mechanism on Cd uptake with continuous flooding management in rice. 【Method】 Pot experiments (exogenous 1.5 mg·kg-1CdCl2 ) were carried out by using rice varieties of Fupin36 (FP36, high Cd accumulation) and Zhongjiazao 17 (ZJZ17, low Cd accumulation). Plantlets were treated by continuous flooding management at early tillering stage and sampled at middle tillering stage. Cd content of plant root and shoot, soil available Cd, Fe and Mn content, root plaque Cd, Fe and Mn content and Cd uptake related gene expression of rice were analyzed. The same treatment was continued until mature stage, plantlets and milled rice were harvested to determine Cd content and yield traits. 【Result】 Compared with the control, the results showed that continuous flooding sharply reduced Cd contents of FP36 and ZJZ17 under pollution condition at middle tillering stage, the root Cd content decreased by 39.5% and 33.9%, shoot Cd content decreased by 62.1% and 71.7%, respectively. Continuous flooding also significantly reduced Cd content of rice root, shoot and milled rice at mature stage. The management reduced root, shoot and milled rice Cd content of FP36 by 36.4%, 43.7% and 36.8%, respectively, it also showed a decrease of 62.5%, 61.5% and 55.4% in ZJZ17. Furthermore, the soil available Cd of FP36 and ZJZ17 significantly decreased by 12.1% and 17.7%, and root plaque Cd content decreased by 52.2% and 43.1% under continuous flooding treatment, respectively. While soil available Fe content (23.7% and 10.3%) and Mn content (24.5% and 43.9%) of FP36 and ZJZ17 significantly increased. Root plaque Fe (83.1% and 81.5%) and Mn content (41.5% and 27.7%) were also elevated under continuous flooding. Simultaneously, the relative expression of OsNramp1 (58.3% and 58.0%) and OsLCD (21.6% and 17.8%) genes were also down-regulated by continuous flooding in rice roots.【Conclusion】Continuous flooding decrease Cd uptake by decreasing soil available Cd content and down-regulating Cd uptake genes expression of OsNramp1 and OsLCD in rice.

Key words: rice, cadmium, transport protein, iron, manganese

[1]    Kobayashi E, Suwazono Y, Dochi M, Honda R, Kido T. Influence of consumption of cadmium-polluted rice or Jinzu River water on occurrence of renal tubular dysfunction and/or Itai-itai disease. Biological Trace Element Research, 2009, 127(3): 257-268.
[2]    Moulis J M, ThEvenod F. New perspectives in cadmium toxicity: An introduction. Biometals, 2010, 23(5): 763-768.
[3]    Clemens S, Aarts M G M, Thomine S, Verbruggen N. Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 2013, 18(2): 92-99.
[4]    Yu H, Wang J, Fang W, Yuan J, Yang Z. Cadmium accumulation in different rice cultivars and screening for pollution- safe cultivars of rice. Science of the Total Environment, 2006, 370(2/3): 302-309.
[5]    Shi J, Li L, Pan G. Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. Journal of Environmental Sciences (China), 2009, 21(2): 168-172.
[6]    Sarwar N, Saifullah, Malhi S S, Zia M H, Naeem A, Bibi S, Farid G. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 2010, 90(6): 925-937.
[7]    Yang Y J, Xiong J, Chen R, Fu G, Chen T, Tao L. Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environmental and Experimental Botany, 2016, 122: 141-149.
[8]    Yang Y J, Chen R, Fu G, Xiong J, Tao L. Phosphate deprivation decreases cadmium (Cd) uptake and reduces Cd tolerance by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa). Acta Physiologiae Plantarum, 2016, 38: 28
[9]    Wei S, Li Y, Zhou Q, Srivastava M, Chiu S, Zhan J, Wu Z, Sun T. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. Journal of Hazardous Materials, 2010, 176(1/3): 269-273.
[10]   杨永杰, 张彩霞, 宋建, 熊杰, 王熹, 章秀福, 符冠富, 陶龙兴. 花期干旱胁迫对籼稻近等基因系水分和光合生理的影响. 中国农业科学, 2013, 46(7): 1481-1491.
Yang Y J, Zhang C X, Song J, Xiong J, Wang X, Zhang X F, Fu G F, Tao L X. Effects of drought stress on water and photosynthetic physiology activities of near-isogenic indica rice lines at flowering stage. Scientia Agricultura Sinica, 2013, 46(7): 1481-1491. (in Chinese)
[11]   杨锚, 王火焰, 周健民, 胡承孝, 杜昌文. 不同水分条件下几种氮肥对水稻土中外源镉转化的动态影响. 农业环境科学学报, 2006, 25(5): 1202-1207.
Yang M, Wang H Y, Zhou J M, Hu C X, Du C W. Effects of applying nitrogen fertilizers on transformation of external cadmium in paddy soil with different soil moisture. Journal of Agro-Environment Science, 2006, 25(5): 1202-1207. (in Chinese)
[12]   陈喆, 张淼, 叶长城, 毛懿德, 周细红, 雷鸣, 魏祥东, 铁柏清. 硅肥料和水分管理对稻米镉污染阻控效果研究. 环境科学学报, 2015, 35(12): 4003-4011.
Chen Z, Zhang M, Ye C C, Mao Y D, Zhou X H, Lei M, Wei X D, Tie B Q. Mitigation of Cd accumulation in rice (Oryza sativa L) with Si fertilizers and irrigation managements. Acta Scientiae Circumstantiae, 2015, 35(12): 4003-4011. (in Chinese)
[13]   杨定清, 雷绍荣, 李霞, 周娅, 罗丽卉, 李旭毅. 大田水分管理对控制稻米镉含量的技术研究. 中国农学通报, 2016, 32(18): 11-16.
Yang D Q, Lei S R, Li X, Zhou Y, Luo L H, Li X Y. Controlling cadmium concentration in rice by field water management technology. Chinese Agricultural Science Bulletin, 2016, 32(18): 11-16. (in Chinese)
[14]   张丽娜, 宗良纲, 付世景, 沈振国. 水分管理方式对水稻在Cd 污染土壤上生长及其吸收Cd 的影响. 安全与环境学报, 2006, 6(5): 49-52.
Zhang L N, Zong L G, Fu S J, Shen Z G. Effects of water control on rice growth and its intake of cadmium on Cd contaminated soil. Journal of Safety and Environment, 2006, 6(5): 49-52. (in Chinese)
[15]   Huang J, Wang S, Lin J, Chen Y, Wang M. Dynamics of cadmium concentration in contaminated rice paddy soils with submerging time. Paddy and Water Environment, 2013, 11(1): 483-491.
[16]   纪雄辉, 梁永超, 鲁艳红, 廖育林, 聂军, 郑圣先, 李兆军. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理. 生态学报, 2007, 27(9): 3930-3939.
Ji X H, Liang Y C, Lu Y H, Liao Y L, Nie J, Zheng S X, Li Z J. The effect of water management on the mechanism and rate of uptake and accumulation of cadmium by rice growing in polluted paddy soil. Acta Ecologica Sinica, 2007, 27(9): 3930-3939. (in Chinese)
[17]   刘昭兵, 纪雄辉, 彭华, 石丽红, 李洪顺. 水分管理模式对水稻吸收累积镉的影响及其作用机理. 应用生态学报, 2010, 21(4): 908-914.
Liu Z B, Ji X H, Peng H, Shi L H, Li H S. Effects and action mechanisms of different water management modes on rice Cd absorption and accumulation. Chinese Journal of Applied Ecology, 2010, 21(4): 908-914. (in Chinese)
[18]   张雪霞, 张晓霞, 郑煜基, 王荣萍, 陈能场, 卢普相. 水分管理对硫铁镉在水稻根区变化规律及其在水稻中积累的影响. 环境科学, 2013, 34(7): 2837–2846.
Zhang X X, Zhang X X, Zheng Y J, Wang R P, Chen N C, Lu P X. Accumulation of S, Fe and Cd in rhizosphere of rice and their uptake in rice with different water managements. Environmental Science, 2013, 34(7): 2837-2846. (in Chinese)
[19]   李义纯, 葛滢. 淹水土壤中镉活性变化及其制约机理. 土壤学报, 2011, 48(4): 840–846.
Li Y C, Ge Y. Variation of cadmium activity in flooded soil and its controlling mechanisms. Acta Pedologica Sinica, 2011, 48(4): 840-846. (in Chinese)
[20]   魏世强, 青长乐, 木志坚. 模拟淹水条件下紫色土镉的释放特征及影响因素. 环境科学学报, 2002, 22(6): 696-700.
Wei S Q, Qing C L, Mu Z J. Transport of cadmium in purple soil under simulated submerging conditions and the influencing factors. Acta Scientiae Circumstantiae, 2002, 22(6): 696-700. (in Chinese)
[21]   Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 2006, 52(4): 464-469.
[22]   Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNramp1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011, 62(14): 4843-4850.
[23]   Sasaki A, Yamaji N, Yokosho K, Ma J F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 2012, 24(5): 2155-2167.
[24]   Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. Characterizing the role of rice Nramp5 in manganese, iron and cadmium transport. Scientific Reports, 2012, 2: 286.
[25]   Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2011, 62(15): 5727-5734.
[26]   Bailey V L, Grant C A, Racz G J, Bailey L D. A practical method for assessing cadmium levels in soil using the DTPA extraction technique with graphite furnace analysis. Communications in Soil Science and Plant Analysis, 1995, 26(7/8): 961-968.
[27]   Taylor G J, Crowder A A. Use of DCB technique for extraction of hydrous iron oxides from roots of wetland plants. American Journal of Botany, 1983, 70(8): 1254-1257.
[28]   周全, 王宏, 张迎信, 董青, 孟帅, 曹立勇, 邵国胜, 沈希宏. 不同镉浓度处理下水稻植株镉含量变化及其镉调控相关基因表达分析. 中国水稻科学, 2016, 30(4): 380-388.
Zhou Q, Wang H, Zhang Y X, Dong Q, Meng S, Cao L Y, Shao G S, Shen X H. Changes in cadmium concentration in rice plants under different cadmium levels and expression analysis of genes retated to cadmium regulation. Chinese Journal of Rice Science, 2016, 30(4): 380-388. (in Chinese)
[29]   杨永杰, 杨雪芹, 张彩霞, 符冠富, 陈婷婷, 陶龙兴. 干旱胁迫下NO对水稻日本晴叶片生理特性的影响. 中国水稻科学, 2015, 29(1): 65-72.
Yang Y J, Yang X Q, Zhang C X, Fu G F, Chen T T, Tao L X. Effects of nitric oxide on drought stress-induced physiological characteristics in leaves of nipponbare (Oryza sativa L). Chinese Journal of Rice Science, 2015, 29(1): 65-72. (in Chinese)
[30]   Nakajima S, Nira R. Precision of Cd content in brown rice cultured in plastic bottles//Proceedings of the 2005 meeting of the Japanese Society of Soil Science and Plant Nutrition. Maebashi, Japan, 2005.
[31]   周君雷, 吴碧球, 黄所生, 黄凤宽. 淹水胁迫对水稻品种次生物质的影响及其与褐飞虱取食量关系. 西南农业学报, 2015, 28(1): 115-119.
Zhou J L, Wu B Q, Huang S S, Huang F K. Effect of flooding stress on secondary metabolites of rice variety and relationship   with feeding amount of rice brown planthopper (BPH). Southwest China Journal of Agricultural Sciences, 2015, 28(1): 115-119. (in Chinese)
[32]   宋文恩, 陈世宝, 唐杰伟. 稻田生态系统中镉污染及环境风险管 理. 农业环境科学学报, 2014, 33(9): 1669-1678.
Song W N, Chen S B, Tang J W. Cadmium pollution and its environmental risk management in rice ecosystem. Journal of Agro-Environment Science, 2014, 33(9): 1669-1678. (in Chinese)
[33]   Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation. Rice, 2012, 5(1): 5-13.
[34]   Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa N K. Rice plants take up iron as an Fe3+- phytosiderophore and as Fe2+. Plant Journal for Cell & Molecular Biology, 2006, 45(3): 335-346.
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[7] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[8] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[9] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[10] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[11] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[12] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[13] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[14] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[15] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!