Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (17): 3286-3299.doi: 10.3864/j.issn.0578-1752.2017.17.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Advances in AquaCrop Model Research and Application

SUN ShiJun1, ZHANG LinLin1, CHEN ZhiJun1, SUN Juan2   

  1. 1College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866; 2Liaoning Hydrology and Water Resources Survey Bureau, Shenyang 110003
  • Received:2017-01-16 Online:2017-09-01 Published:2017-09-01

Abstract: AquaCrop is a kind of new crop model developed by FAO in 2009. It is widely used in agricultural fields, because it need fewer parameters, and can provide users more simple interface, compared with other similar crop models. According to the principle and characteristics of the AquaCrop model, some further discussions were developed on the application of this model at domestic and abroad. Analysis shows that, the AquaCrop model has achieved remarkable results in irrigation strategy, scenario simulation under climate change and joint application with other models. However, at present, the model is not perfect enough, because of the following reasons. Firstly, the lack of verification of the conservative parameters of the model usually results in lower simulation accuracy. Secondly, the objective existence of spatial variability of soil, which is commonly suitable and helpful so much when applied at single experimental station, but when applied to larger area, some more stations and data are needed. Thirdly, less research on crop growth in rain-fed areas was conducted, and its non-conservative parameters are difficult to be obtained accurately. Finally, the physiological modules, nutrient modules and interaction modules of water and nutrient are not perfect, and the crop genetic varieties and pests are not included, which result in lower simulation accuracy under severe stress conditions. It is concluded that, when the model is applied, the conservative parameters should be modified by using many years' data of crop, and non-conservative modeling parameters should be corrected by combining multi-year data at a single site with multi-sites data in the experimental region. Currently, scholars and researches are supposed to strengthen the research in rain-fed areas, enlarge the scope of application of the model, and related designers should develop more sub-modules of AquaCrop model to increase the modeling accuracy and broaden its application scope.

Key words: AquaCrop model, irrigation strategy, scene simulation, crop model

[1]    曹卫星, 罗卫红. 作物模拟系统及智能管理. 北京: 高等教育出版社, 2003.
Cao W X, Luo W H. Crop System Simulation and Intelligent Management. Beijing: Higher Education Press, 2003. (in Chinese)
[2]    林忠辉, 莫兴国, 项月琴. 作物生长模型研究综述. 作物学报, 2003, 29(5): 750-758.
Lin Z H, Mo X G, Xiang Y Q. Research advances on crop growth models. Acta Agronomica Sinica, 2003, 29(5): 750-758. (in Chinese)
[3]    高亮之. 国际上最新推出的作物模型-AquaCrop [EB/OL]. (2009- 12-29) [2017-01-16]. http://www.jaaslib.ac.cn:88/daamnet/DAAM-10/ AquaCrop. htm.
GAO L Z. The latest crop model of the international developed by FAO-AquaCrop [EB/OL]. (2009-12-29) [2017-01-16]. http://www. jaaslib.ac.cn:88/daamnet/DAAM-10/AquaCrop.htm. (in Chinese)
[4]    Raes D, Steduto P, Hsiao T C, Fereres E. AquaCrop—The FAO crop model to simulate yield response to water: II: main algorithms and software description. Agronomy Journal, 2009, 101(3): 438-447.
[5]    DOORENBOS J, KASSAM A H. Yield Response to Water. FAO Irrigation and Drainage Paper, Rome: FAO, 1979.
[6]    Raes D, Geerts S, Kipkorir E, Wellens J, Sahli A. Simulation of yield decline as result of water stress with a robust soil water balance model. Agricultural Water Management, 2006, 81(3): 335-357.
[7]    STEDUTO P, RAES M, HSIAO T C, FERERES E, HENG L, IZZI G, HOOGEVEEN J. AquaCrop: A new model for crop prediction under water deficit conditions. Options Mediterraneennes, Series A, 2008, 80: 285-292.
[8]    GEERTS S, RAES M, MIRANDA J A, CUSICANQUI C, TABOADA J, MENDOZA R, HUANCA A, MAMANI O, CONDORI J, MAMANI B, MORALES U, STEDUTO P. Simulating yield response to water of quinoa (Chenopodium quinoa Willd.) with FAO-AquaCrop. Agriculture Journal, 2009, 197: 119-126.
[9]    STEDUTO P, HSIAO T C, RAES D, FERERES E. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 2009, 110(3): 426-437.
[10]   HSIAO T C, HENG L, STEDUTO P, ROJAS-LARA B, RAES D, FERERES E. AquaCrop-the FAO crop model to simulate yield response to water: III. parameterization and testing for maize. Agronomy Journal, 2009, 101(3): 448-459.
[11]   张铁楠, 付驰, 李晶, 顾万荣, 许为政, 芦玉双, 魏湜. 基于寒地春小麦AquaCrop与WOFOST模型适应性验证分析. 作物杂志, 2013, 154(3): 121-126.
ZHANG T N, FU C, LI J, GU W R, XU W Z, LU Y S, WEI S. The adaptability test analysis of AquaCrop and WOFOST model based on the cold spring wheat. Crops, 2013, 154(3): 121-126. (in Chinese)
[12]   TODOROVIC M, ALBRIZIO R, ZIVOTIC L, SAAB M, STOCKLE C, STEDUTO P. Assessment of Aqua Crop, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 2009, 101(3): 509-521.
[13]   SAAB M T A, TODOROVIC M, ALBRIXIO R. Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models. Agricultural Water Management, 2015, 147(1): 21-33.
[14]   DANIEL C. One-at-a-time plans. Journal of the American Statistical Association, 1973, 68(342): 353-360.
[15]   邢会敏, 相诗尧, 徐新刚, 陈宜金, 冯海宽, 杨贵军, 陈召霞. 基于EFAST方法的AquaCrop作物模型参数全局敏感性分析. 中国农业科学, 2017, 50(1): 64-76.
XING H M, XIANG S Y, XU X G, CHEN Y J, FENG H K, YANG G J, CHEN Z X. Global sensitivity analysis of AquaCrop crop model parameters based on EFAST method. Scientia Agricultura Sinica, 2017, 50(1): 64-76. (in Chinese)
[16]   项艳. AquaCrop模型在华北地区夏玉米生产中的应用研究[D]. 泰安: 山东农业大学, 2009.
XIANG Y. AquaCrop model application of summer maize planting in North China[D]. Taian: Shandong Agricultural University, 2009. (in Chinese)
[17]   付驰, 李双双, 李晶, 王泳超, 芦玉双, 许为政, 魏湜. AquaCrop作物模型在松嫩平原春麦区的校正和验证. 灌溉排水学报, 2012, 31(5):99-102.
FU C, LI S S, LI J, WANG Y C, LU Y S, XU W Z, WEI S. Calibration and validation of AquaCrop model in spring wheat region of Songnen Plain. Journal of Irrigation and Drainage, 2012, 31(5): 99-102. (in Chinese)
[18]   郝志鹏. AquaCrop模型在关中及渭北地区的适用性评价[D]. 杨凌: 西北农林科技大学, 2013.
HAO Z P. Applicability evaluation of AquaCrop model in the Guanzhong & Weibei area[D]. Yangling: Northwest A&F University, 2013. (in Chinese)
[19]   李会, 刘钎, 蔡甲冰, 毛晓敏. AquaCrop模型的适用性及应用初探. 灌溉排水学报, 2011, 30(3): 28-33.
LI H, LIU Q, CAI J B, MAO X M. The applicability and application of AquaCrop model. Journal of Irrigation and Drainage, 2011, 30(3): 28-33. (in Chinese)
[20]   韩健. AquaCrop模型在晋中盆地玉米栽培研究中的应用[D]. 太原: 山西大学, 2012.
HAN J. AquaCrop model application of maize planting in Jinzhong basin[D]. Taiyuan: Shanxi University, 2012. (in Chinese)
[21]   刘琦. 利用AquaCrop模型模拟覆膜春玉米耗水和产量[D]. 北京: 中国农业科学院, 2015.
LIU Q. Simulating water use and yield of plastic film mulched spring maize with AquaCrop model[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[22]   杨宁, 孙占祥, 张立桢, 郑家明, 冯良山, 李开宇, 张哲, 冯晨. 基于改进AquaCrop模型的覆膜栽培玉米水分利用过程模拟与验证. 农业工程学报, 2015, 31(s1):122-132.
YANG N, SUN Z X, ZHANG L Z, ZHENG J M, FENG L S, LI K Y, ZHANG Z, FENG C. Simulation of water use process by film mulched cultivated maize based on improved AquaCrop model and its verification. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(s1): 122-132. (in Chinese)
[23]   刘匣, 丁奠元, 张浩杰, 褚晓升, 余坤, 冯浩. 覆膜条件下对AquaCrop模型冬小麦生长动态和土壤水分模拟效果的评价分析. 中国农业科学, 2017, 50(10): 1841-1854.
LIU X, DING D Y, ZHANG H J, CHU X S, YU K, FENG H. Evaluation analysis of AquaCrop model in modeling winter wheat growing development and soil moisture under plastic mulching. Scientia Agricultura Sinica, 2017, 50(10): 1841-1854. (in Chinese)
[24]   FARAHANI H J, IZZI G, OWEIS T Y. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal, 2009, 101(3): 469-476.
[25]   MKHABELA M S, BULLOCK P R. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in western Canada. Agricultural Water Management, 2012, 110(7): 16-24.
[26]   ANDARZIAN B, BANNAYAN M, STEDUTO P, MAZRAEH H, BARATI M E, BARATI M A, RAHNAMA A. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 2011, 100(1): 1-8.
[27]   HENG L K, HSIAO T, EVETT S, HOWELL T, STEDUTO P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal, 2009, 101(3): 488-498.
[28]   KATERJI N, CAMPI P, MASTRORILLI M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management, 2013, 130(4): 14-26.
[29]   STRICEVIC R, COSIC M, DJUROVIC N, PEJIC B, MAKSIMOVIC L. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplemental irrigated maize sugar beet and sunflower. Agricultural Water Management, 2011, 98(10): 1615-1621.
[30]   SINGH A, SAHA S, MONDAL S. Modeling irrigated wheat production using the FAO AquaCrop model in west Bengal, India, for sustainable agriculture. Irrigation and Drainage, 2013, 62(1): 50-56.
[31]   KARUNARATNE A S, AZAM-ALI S N, IZZI G, STEDUTO P. Calibration and validation of FAO-AquaCrop model for irrigated and water deficient bambara groundnut. Experimental Agriculture, 2011, 47(3): 509-527.
[32]   林忠辉, 莫兴国, 项月琴. 作物生长模型研究综述. 作物学报, 2003, 29(5): 750-758.
LIN Z H, MO X G, XIANG Y Q. Research advances on crop growth models. Acta Agronomica Sinica, 2003, 29(5): 750-758. (in Chinese)
[33]   杜文勇, 何雄奎, Shamaila Z, 胡振方, 曾爱军, Muller J. 冬小麦生物量和产量的AquaCrop模型预测. 农业机械学报, 2011, 42(4): 174-178.
DU W Y, HE X K, SHAMAILA Z, HU Z F, ZENG A J, MULLER J. Yield and biomass prediction testing of AquaCrop model for winter wheat. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 174-178. (in Chinese)
[34]   WANG X, WANG Q, FAN J, FU Q. Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China's Loess Plateau. Agricultural Water Management, 2013, 129: 95-104.
[35]   倪玲. 基于AquaCrop模型的冬小麦灌溉制度研究[D]. 杨凌: 西北农林科技大学, 2015.
NI L. Irrigation management for winter wheat based on AquaCrop model[D]. Yangling: Northwest A&F University, 2015. (in Chinese)
[36]   滕晓伟, 董燕生, 沈家晓, 孟鲁闽, 冯海宽. AquaCrop模型对旱区冬小麦抗旱灌溉的模拟研究. 中国农业科学, 2015, 48(20): 4100-4110.
TENG X W, DONG Y S, SHEN J X, MENG L M, FENG H K. Winter wheat irrigation simulation in arid area based on AquaCrop model. Scientia Agricultura Sinica, 2015, 48(20): 4100-4110. (in Chinese)
[37]   王亚敏. 基于AquaCrop模型的西北干旱半干旱地区主要作物产量-水分模拟研究[D]. 杨凌: 西北农林科技大学, 2011.
WANG Y M. Simulation of yield and water relationship of main crops in arid and semi-arid region of Northwest China based on AquaCrop model[D]. Yangling: Northwest A&F University, 2011. (in Chinese)
[38]   李玥, 牛俊义, 郭丽琢, 高珍妮, 孙小花. AquaCrop模型在西北胡麻生物量及产量模拟中的应用和验证. 中国生态农业学报, 2014, 22(1):93-103.
LI Y, NIU J Y, GUO L Z, GAO Z N, SUN X H. Application and validation of AquaCrop model in simulating biomass and yield of oil flax in northwest China. Chinese Journal of Eco-Agriculture, 2014, 22(1): 93-103. (in Chinese)
[39]   王翔翔. 渭北旱源作物生长特征及其管理模式研究[D]. 北京: 中国科学院, 2015.
WANG X X. Study of crop growth characteristics and the management model of Weibei dryland on the Loess Plateau[D]. Beijing: Chinese Academy of Sciences, 2015. (in Chinese)
[40]   GEERTS S, RAES D, GARCIA M, MIRANDA R, CUSICANQUI J, TABOADA C, MAMANI R, MENDOZA J, HUANCA R, MHIZHA T. Calibration and validation of the FAO-AquaCrop model for the under- utilized crop quinoa (Chenopodium quinoa Willd) in the Bolivian Altiplano//Proceedings of the ASA-CSSA-SSSA 2007 International Annual Meeting. New Orleans: ASA-CSSA-SSSA, 2007.
[41]   TSEGAY A, RAES D, GEERTS S, VANUYTRECHT E, BERHANU A, DECKERS S, BAUER H, GEBREHIWOT K. Unravelling crop water productivity of Tef (Eragrostis Tef (Zucc.) trotter) through AquaCrop in northern Ethiopia. Exp Agric. Experimental Agriculture, 2012, 48(2): 222-237.
[42]   WELLENS J, RAES D, TRAORE F, DENIS A, DJABY B, TYCHON B. Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment. Agricultural Water Management, 2013, 127(3): 40-47.
[43]   MONTOYA F, CAMARGO D, ORTEGA J F, CORCOLES J I, DOMINGUEZ A. Evaluation of AquaCrop model for a potato crop under different irrigation conditions. Agricultural Water Management, 2016, 164: 267-280.
[44]   李晶, 付驰, 张铁楠, 罗宁, 乔天长, 张丽芳, 魏湜. 基于AquaCrop模型的东北春麦区小麦冠层生长模拟研究. 水土保持研究, 2013, 20(6):106-110.
LI J, FU C, ZHANG T N, LUO N, QIAO T C, ZHANG L F, WEI S. Study on the simulation of the canopy growth of spring wheat in the northeast based on the AquaCrop model. Research of Soil and Water Conservation, 2013, 20(6): 106-110. (in Chinese)
[45]   刘兴冉, 沈彦俊. AquaCrop模型在华北平原夏玉米水分研究中的应用. 农业现代化研究, 2014, 35(3):371-375.
LIU X R, SHEN Y J. Application of AquaCrop model for simulating the summer maize water use in North China Plain. Research of Agricultural Modernization, 2014, 35(3): 371-375. (in Chinese)
[46]   JIN X L, FENG H K, ZHU X K, LI Z H, SONG S N, SONG X Y, YANG G J, XU X G, GUO W S. Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PLoS ONE, 2014, 9(1): e86938-e86938.
[47]   李子忠, 徐洋, 卢宪菊, 胡克林, 江丽华, 徐钰. AquaCrop 模型在大葱生物量和土壤贮水量模拟中的应用和验证. 中国农业大学学报, 2011, 16(4): 59-66.
LI Z Z, XU Y, LU X J, HU K L, JIANG L H, XU Y. Evaluation of the AquaCrop model for simulating biomass for Chinese green onion and soil water storage. Journal of China Agricultural University, 2011, 16(4): 59-66. (in Chinese)
[48]   HENG L K, HSIAO T, EVETT S, HOWELL T, STEDUTO P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Symposium Papers, 2009, 101(3): 488-498.
[49]   ARAYA A, HABTU S, HADGU K M, KEBEDE A, DEJENE T. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 2010, 97(11): 1838-1846.
[50]   ANDARZIAN B, BANNAYAN M, STEDUTO P, MAZRAEH H, BARATI M E, BARATI M A, RAHNAMA A. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 2011, 100(1): 1-8.
[51]   SALEMI H, SOOM M A M, MOUSAVI S F, GANJI A, LEE T S, YUSOFF M K, VERDINEJED V R. Irrigated silage maize yield and water productivity response to deficit irrigation in an arid region. Polish Journal of Environmental Studies, 2011, 20(5): 1295-1303.
[52]   HUSSEIN F, JANAT M, YAKOUB A. Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Spanish Journal of Agricultural Research, 2011, 9(4): 1319-1330.
[53]   ABEDINPOUR M, SARANGI A, RAJPUT T B S, SINGH M, PATHAK H, AHMAD T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agriculture Water Management, 2012, 110(3): 55-66.
[54]   BILGA N K. Parameterization and application of the AquaCrop model for simulating bioenergy crops in Oklahoma[D]. Punjab: PunjabAgricultural University, 2012.
[55]   WHISLER F D, ACOCK B, BAKER D N, FYE R E, HODGES H F, LAMBERT J R, LEMMON H E, MCKINION J M, REDDY V R. Crop simulation models in agronomic systems. Advances in Agronomy, 1986, 40: 141-208.
[56]   MAINUDDIN M, KIRBY M, CHU T H. Adaptation to climate change for food security in the lower Mekong Basin. Food Security, 2011, 3(4): 433-450.
[57]   VANUYTRECHT E, RAES D, WILLEMS P. Considering sink strength to model crop production under elevated atmospheric CO2. Agricultural and Forest Meteorology, 2011, 151(12): 1753-1762.
[58]   SODDU A, DEIDDU R, MARROCU M, MELONI R, PANICONI C, LUDWIG R, SODDE M, MASCARO G, PERRA E. Climate variability and durum wheat adaptation using the AquaCrop model in southern Sardinia. Procedia Environmental Sciences, 2013, 19(17): 830-835.
[59]   常文娟, 梁忠民. AquaCrop模型在农业旱灾损失评估中的应用. 南水北调与水利科技, 2014(5):175-178.
CHANG W J, LIANG Z M. Application of AquaCrop model in evaluation of agricultural drought losses. South-to-North Water Transfers and Water Science & Technology, 2014(5): 175-178. (in Chinese)
[60]   ZINYENGERE N, MHIZHA T, MASHONJOWA E, CHIPINDU B, GEERTS S, RAES D. Using seasonal climate forecasts to improve maize production decision support in Zimbabwe. Agricultural and Forest Meteorology, 2012, 151(12): 1792-1799.
[61]   GARCIA-VILA M, FERERES E. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy, 2012, 36(36): 21-31.
[62]   金秀良. 基于AquaCrop模型与多源遥感数据的北方冬小麦水分利用效率估算[D]. 扬州: 扬州大学, 2015.
JIN X L. Estimation of water use efficiency of winter wheat based on AquaCrop model and multi-source remote sensing data in northern[D]. Yangzhou: Yang Zhou University, 2015. (in Chinese)
[63]   LORITE I J, GARCIA-VILA M, SANTOS C, RUIZ-RAMOS M, FERERES E. AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Computers and Electronics in Agriculture, 2013, 96(6): 227-237.
[64]   ARAYA A, KEESSTRA S D, STROOSNIJDER L. Simulating yield response to water of teff (Eragrostis tef) with FAO's AquaCrop model. Field Crops Research, 2010, 116(1/2): 196-204.
[65]   SALEMI H, SOOM M A M, MOUSAVI S F, GANJI A, LEE T S, YUSOFF M K, VERDINEJAD V R. Irrigated silage maize yield and water productivity response to deficit irrigation in an arid region. Polish Journal of Environmental Studies, 2011, 20(5):1295-1303.
[66]   KATERJI N, CAMPI P, MASTRORILLI M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management, 2013, 130(4): 14-26.
[1] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[2] LIU Xia, DING DianYuan, ZHANG HaoJie, CHU XiaoSheng, YU Kun, FENG Hao. Evaluation Analysis of AquaCrop Model in Modeling Winter Wheat Growing Development and Soil Moisture Under Plastic Mulching [J]. Scientia Agricultura Sinica, 2017, 50(10): 1838-1851.
[3] XING HuiMin, XIANG ShiYao, XU XinGang, FENG HaiKuan, YANG GuiJun, CHEN ZhaoXia. Global Sensitivity Analysis of AquaCrop Crop Model Parameters Based on EFAST Method [J]. Scientia Agricultura Sinica, 2017, 50(1): 64-76.
[4] XING Hui-min, XU Xin-gang, FENG Hai-kuan, LI Zhen-hai, YANG Fu-qin, YANG Gui-jun, HE Peng, CHEN Zhao-xia. Water Use Efficiency of Winter Wheat Based on AquaCrop Model in Beijing [J]. Scientia Agricultura Sinica, 2016, 49(23): 4507-4519.
[5] TENG Xiao-wei, DONG Yan-sheng, SHEN Jia-xiao, MENG Lu-min, FENG Hai-kuan. Winter Wheat Irrigation Simulation in Arid Area Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2015, 48(20): 4100-4110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!