Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (17): 3247-3258.doi: 10.3864/j.issn.0578-1752.2017.17.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

QTL Mapping and Integration as well as Candidate Genes Identification for Plant Height in Rapeseed (Brassica napus L.)

ZHANG JiangJiang1, ZHAN JiePeng1, LIU QingYun2, SHI JiaQin1, WANG XinFa1, LIU GuiHua1, WANG HanZhong1   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062; 2Oil Crops Extension Station of the Agricultural Bureau of Xishui County, Huanggang 438200, Hubei
  • Received:2017-01-20 Online:2017-09-01 Published:2017-09-01

Abstract: 【Objective】In order to reveal the genetic architecture and candidate genes for plant height in rapeseed, QTLs were mapped in multiple environments and were integrated with previously reported plant height QTLs and then aligned with the plant height genes, which will provide a basis for the molecular improvement of plant height in rapeseed. 【Method】 The BnaZNF2 population of 184 individuals derived from the elite rapeseed cultivar Zhongshuang11 (de novo sequencing) and No.73290 (re-sequencing) was used as the experimental material. First, the BnaZNF2 population was subjected to genotype analysis and a high-density linkage map of 803 molecular markers was constructed using Joinmap 4.0. Second, the F2:3 and F2:4 family of BnaZNF2 population were planted and phenotyped at two locations (Wuhan and Xining) for successive two years (2010 and 2011). Then QTL mapping was conducted by the composite interval mapping method incorporated into WinQTLCart 2.5 software, using the genotype of BnaZNF2 population and the plant height phenotype of its F2:3 and F2:4 family. 【Result】 After integration of QTLs detected in two locations over two years, a total of 5 consensus QTLs (qPH.A2-1, qPH.A2-2, qPH.C2-1, qPH.C3-1, qPH.C3-2) were obtained, which were distributed on A2, C2 and C3 chromosomes and, explained 2.6%-55.6% of the phenotypic variance. A major QTL on the C2 chromosome, qPH.C2-1, was only detected repeatedly in Xining and its LOD value, additive effect and R2 (23.4, -16.0 and 55.6%, respectively) were largest among all of the reported plant height QTLs. Based on the physical map of rapeseed, all of the currently and previously reported plant height QTLs in rapeseed were integrated and then aligned with the plant height genes, which revealed a relatively completed genetic architecture map consisting of 183 QTLs in rapeseed and 287 candidate genes in rapeseed. Of these, a total of 18 QTL cluster were commonly detected in different studies, which were distributed on A1, A2, A3, A6, A7, A9, C6 and C7 chromosomes. In addition, the physical positions of the five QTL detected in the current study were all not overlapped with those of the previously detected plant height QTL, which should be novel. A total of 15 homologues of plant height genes were found within the physical intervals of qPH.A2-2, qPH.C3-1 and qPH.C3-2, of which 11 homologues showed sequence variations between the two parents, which were chosen as the candidates for further study. 【Conclusion】 QTL mapping and integration identified five QTL for plant height in rapeseed, which were all novel. The effect of the major QTL on the C2 chromosome was larger than those of the previously reported plant height QTL, which also showed the strong interaction with the environment. The integration of the reported plant height QTLs and the alignment with the plant height genes systematically revealed the genetic architecture and candidate genes for plant height in rapeseed. By bioinformatics analysis, a total of 11 candidates were identified within the physical intervals of three plant height QTLs detected in the current study.

Key words: Brassica napus L., plant height, genetic architecture, QTL, candidate genes, QTL by environment interaction

[1]    Hu Q, Hua W, Yin Y, Zhang X K, Liu L J, Shi J Q, Zhao Y G, Qin L, Chen C, Wang H Z. Rapeseed research and production in China. The Crop Journal, 2017, 5(2): 127-135.
[2]    James C. Global review of commercialized transgenic crops. Current Science, 2003, 84: 303-309.
[3]    王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014, 36(3): 414-421.
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chinese Journal of Oil Crop Sciences, 2014, 36(3): 414-421. (in Chinese)
[4]    沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2013, 13(1): 1-8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. Journal of Agricultural Science and Technology, 2013, 13(1): 1-8. (in Chinese)
[5]    Thuiling N. Application of the ideotype concept in breeding for higher yield in the oilseed brassicas. Field Crops Research, 1991, 26(2): 201-219.
[6]    易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006, 32(5): 676-682.
Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L.. Acta Agronomica Sinica, 2006, 32(5): 676-682. (in Chinese)
[7]    王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010, 32(2): 300-302.
Wang H Z. Review and future development of rapeseed industry in China. Chinese Journal of Oil Crop Sciences, 2010, 32(2): 300-302. (in Chinese)
[8]    Wang Y K, He J B, Yang L, Wang Y, Chen W J, Wan S B, Chu P, Guan R Z. Fine mapping of a major locus controlling plant height using a high?density single?nucleotide polymorphism map in Brassica napus. Theoretical and Applied Genetics, 2016, 129(8): 1479-1491.
[9]    张凤启, 刘越英, 程晓辉, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅. 利用高密度SNP标记定位甘蓝型油菜株高QTL. 中国油料作物学报, 2014, 36(6): 695-700.
Zhang F Q, Liu Y Y, Cheng X H, Tong C B, dong c h, Tang M Q, Huang J Y, Liu S Y. QTL mapping of plant height using high density SNP markers in Brassica napus. Chinese Journal of Oil Crop Sciences, 2014, 36(6): 695-700. (in Chinese)
[10]   Ding G D, Zhao Z K, Liao Y, Hu Y F, Shi L, Long Y, Xu F S. Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Annals of Botany, 2012, 109(4): 747-759.
[11]   Quijada P A, Udall A J, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. identification of genomic regions from winter germplasm. Theoretical and Applied Genetics, 2006, 113(3): 549-561.
[12]   Li F, Chen B Y, Xu K, Gao G Z, Yan G X, Qiao J W, Li J, Li H, Li L X, Xiao X, Zhang T Y, Takeshi N, Wu X M. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Science, 2016, 242: 169-177.
[13]   Wang X D, Wang H, Long Y, Liu L Z, Zhao Y J, Tian J H, Zhao W G, Li B J, Chen L, Chao H B, Li M T. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L.. Theoretical and Applied Genetics, 2015, 128(6): 1175-1192.
[14]   Cai D F, Xiao Y J, Yang W, Ye W, Wang B, Muhammad Y, Wu J S, Liu K D. Association mapping of six yield?related traits in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2014, 127: 85-96.
[15]   Shi T X, Li R Y, Zhao Z K, Ding G D, Long Y, Meng J L, Xu F S, Shi L. QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PloS One, 2013, 8(1): e54559.
[16]   Basunanda P, Radoev M, Ecke W, Friedt W, Becker H C, Snowdon R J. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2010, 120(2): 271-281.
[17]   Valiollah R. Combining ability analysis of plant height and yield components in spring type of rapeseed varieties (Brassica napus L.) using line × tester analysis. International Journal of Agriculture and Forestry, 2012, 2(1): 58-62.
[18]   Mladen R, Heiko C B, Wolfgang E. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008, 179(3): 1547-1558.
[19]   Mei D S, Wang H Z, Hu Q, Li Y D, Xu Y S, Li Y C. QTL analysis on plant height and flowering time in Brassica napus. Plant Breeding, 2009, 128(5): 458-465.
[20]   Zhang S F, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z, Jiang Y Z. QTL mapping and epistasis analysis for plant height and height to the first branch in rapeseed (Brassica napus L.). Biotechnology, 2007, 2: 232-235.
[21]   王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊. 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因的筛选. 作物学报, 2015, 41(7): 1027-1038.
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z. Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening in Brassica napus L.. Acta Agronomica Sinica, 2015, 41(7): 1027-1038. (in Chinese)
[22]   Liu C, Wang J L, Huang T D, Wang F, Yuan F, Cheng X M, Zhang Y, Shi S W, Wu J S, Liu K D. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theoretical and Applied Genetics, 2010, 121(2): 249-258.
[23]   Ma X S, Feng F J, Wei H B, Mei H W, Xu K, Chen S J, Li T F, Liang X H, Liu H Y, Luo L J. Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Frontiers in Plant Science, 2016, 144(6): 651-664.
[24]   Shi J Q, Li R Y, Qiu D, Jiang C C, Long Y, Morgan C, Bancroft I, Zhao J Y, Meng J L. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009, 182(3): 851-861.
[25]   Shi J Q, Zhan J P, Yang Y H, Ye J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Scientific Reports, 2015, 5: 14481.
[26]   Huang S M, Deng L B, Guan M, Li J N, Lu K, Wang H Z, Fu D H, Annaliese S M, Liu S Y, Hua W. Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC genomics, 2013, 14(1): 717.
[27]   张芳. 我国油菜品种审定管理与育种趋势研究[D]. 北京: 中国农业科学院, 2012.
Zhang F. Rape cultivar breeding and management trends[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[28]   Wang S, Basten C J, Gaffney P, Zeng Z B. Windows    QTL Cartographer version 2.5. North Carolina State University. Bioinformatics Research Center, Raleigh, 2001. http://statgen.ncsu.edu/ qtlcart/WQTLCart,htm.
[29]   Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(23): 10972-10976.
[30]   Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136(4): 1457-1468.
[31]   McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14(11): 11-13.
[32]   Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000, 155(1): 463-473 .
[33]   Kujur A, Upadhyaya H D, Bajaj D, Gowda C L L, Sharma S, Tyagi A K, Parida S K. Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea. Scientific Reports, 2016, 6: 27968.
[34]   Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D G, Tao Y S, Zheng Y L, Zhang Z X. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. The Plant Journal, 2013, 73(3): 405-416.
[35]   Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X. Genome-wide association study identifies candidate genes that affect plant height in chinese elite maize (Zea mays L.) inbred lines. PloS One, 2011, 6(12): e29229.
[36]   María L R, Emiliano A, Mariano B, Carlos A S. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower. Theoretical and Applied Genetics, 2013, 126(1): 251-263.
[37]   Li X P, Zhou Z J, Ding J Q, Wu Y B, Zhou B, Wang R X, Ma J L, Wang S W, Zhang X C, Xia Z L, Chen J F, Wu J Y. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Frontiers in Plant Science, 2016, 7: 833.
[38]   Ma X S, Feng F J, Wei H B, Mei H W, Xu K, Chen S J, Li T F, Liang X H ,Liu H Y, Luo L J. Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Frontiers in Plant Science, 2016, 7: 1801.
[39]   Zanke C D, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal M W, Röder M S. Analysis of main effect QTL for thousand grain weight in european winter wheat (Triticum aestivum L.) by genome-wide association mapping. Frontiers in Plant Science, 2016, 6: 644.
[40]   Lim J H, Yang H J, Jung K H, Yoo S C, Paek N C. quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Molecules and Cells, 2014, 37(2): 149-160.
[41]   Wang Y J, Xu J, Deng D X, Ding H D, Bian Y L, Yin Z T, Wu Y R, Zhou B, Zhao Y. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta, 2016, 243: 459-471.
[42]   Peng Y L, Gao Z Y, Zhang B, Liu C L, Xu J, Ruan B P, Hu J, Dong G J, Guo L B, Liang G H, Qian Q. Fine mapping and candidate gene analysis of a major QTL for panicle structure in rice. Plant Cell Reports, 2014, 33: 1843-1850.
[43]   Vemireddy L R, Noor S, Satyavathi V V, Srividhya A, Kaliappan A, Parimala SRN, Bharathi P M, Deborah D A, Rao K S, Shobharani N, Siddiq E A, Nagaraju J. Discovery and mapping of genomic regions governing economically important traits of Basmati rice. BMC Plant Biology, 2015, 15: 207.
[44]   Mallikarjuna R K, Zhang Y S, Yu S B, Yang G Y, Yan W H, Xing Y Z. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1. Theoretical and Applied Genetics, 2011, 123: 705-714.
[45]   Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. The Plant Cell, 1995, 7(1): 75-84.
[46]   Fujioka S, Yamane H, Spray C R, Gaskin P, Macmillan J, Phinney B O, Takahashi N. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal,dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L.. Plant Physiology,1988, 88(4): 1367-1372.
[47]   Spray C R, Kobayashi M, Suzuki Y, Phinney B O, Gaskin P, MacMillan J. The dwarf-i (dl) mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proceedings of the National Academy of Sciences of the United States of America,1996, 93(19): 10515-10518.
[48]   Liu T, Zhang J, Wang M, Wang Z, Li G, Qu L, Wang G. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Reports, 2007, 26(12): 2091-2099.
[49]   Weng F J, Xie C X, Hao Z F, Wang J J, Liu C L, Li M S, Zhang D H, Bai L, Zhang S H, Li X H. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PloS One, 2011, 6(12): e29229.
[50]   Chalhoub B, Denoeud F, Liu S Y, Parkin I A, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Da S C, Just J, Falentin C, Koh C S, Le C I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M C, Fan G G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science,2014, 345(6199): 950-953.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[5] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[6] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[7] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[8] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[9] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[10] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[11] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[12] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[13] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[14] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[15] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!