Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (5): 1018-1028.doi: 10.3864/j.issn.0578-1752.2020.05.013

• HORTICULTURE • Previous Articles     Next Articles

Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil

TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi()   

  1. College of Horticulture and Landscape, Northeast Agricultural University, Harbin 150030
  • Received:2019-07-24 Accepted:2019-09-29 Online:2020-03-01 Published:2020-03-14
  • Contact: FengZhi WU E-mail:fzwu2006@aliyun.com

Abstract:

【Objective】 The aim of this paper was to study the effects of wheat root exudates on specific microflora, fungal community structure and diversity in watermelon continuous cropping soils, which was of great theoretical significance to find out the effects of root exudates on the improvement of soil microbial environment, the ecological control of watermelon wilt and the healthy maintenance of vegetable soil. 【Method】 In this experiment, the continuous cropping of watermelon for three years was used as the research object. The effects of wheat root exudates on the structure and diversity of fungal community in watermelon continuous cropping soil were studied by soil culture experiment. 【Result】Re-time PCR results showed that exogenously added wheat root exudates reduced the abundance of total fungal, Fusarium spp. and Fusarium oxysporum f. sp. niveum, but the abundance of Trichoderma spp. was increased in the soils with and without watermelon seedlings. Moreover, the abundance of Trichoderma spp. was the highest under the treatment with watermelon seedlings and exogenous addition of wheat root exudates, but the abundance of Fusarium spp. was the lowest. Trichoderma spp. treated with no watermelon seedlings and added with deionized water solution had the lowest abundance, while Fusarium oxysporum had the highest abundance. At the phylum level, exogenous addition of wheat root exudates increased the relative abundance of Chytridiomycota in the watermelon soils, but reduced the relative abundances of Zygomycota and Basidiomycota in the soils with and without watermelon seedlings. At the genus level, exogenous addition of wheat root exudates increased the relative abundances of Chaetomium and Acremonium spp. in the soils with and without watermelon seedlings, whose species could have pathogen-antagonistic and/or plant-growth-promoting effects. However, exogenously addition wheat root exudates decreased the relative abundances of Fusarium and Humicola spp. in the soils with and without watermelon seedlings, which contained the species that could cause plant pathogens. 【Conclusion】Overall, our results showed that, the change of fungal community in watermelon soil caused by wheat root exudates was one of the reasons why wheat/watermelon slowed down watermelon disease.

Key words: fungal community, Trichoderma spp., Fusarium spp., wheat root exudates, watermelon, continuous cropping soil

Fig. 1

Effects of wheat root exudates on α diversity of fungal communities NC: No wheat root exudates to the soils of no watermelon seedling; NR: Wheat root exudates to the soils of no watermelon seedling; WC: No wheat root exudates to the soils of watermelon seedling; WR: Wheat root exudates to the soils of watermelon seedling. Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 2

Effects of wheat root exudates on the abundances of total fungi (a), Trichoderma spp. (b), Fusarium spp. (c) and Fusarium oxysporum f. sp. niveum (d)"

Fig. 3

Effects of wheat root exudates on the phylum (a) and class (b) level of fungal in watermelon soil"

Table 1

Effects of wheat root exudates on the genus level of fungal in watermelon soil"

属水平
Genus
处理 Treatment
NC NR WC WR
丝壳属 Kernia 25.53±1.17a 26.10±1.27a 4.04±0.09c 7.17±0.27b
毛壳菌属 Chaetomium 8.91±0.85c 8.21±0.42c 14.92±0.71b 17.75±0.57a
假霉样真菌属 Pseudallescheria 5.58±0.45c 2.87±0.09d 10.80±0.28b 11.78±0.21a
镰刀菌属 Fusarium 2.76±0.07c 2.54±0.11c 16.06±0.47a 8.08±0.46b
枝顶孢属 Acremonium 5.58±0.23b 16.26±0.33a 1.55±0.17c 1.85±0.14c
腐质霉属 Humicola 3.76±0.24a 3.14±0.17b 5.71±0.26a 5.49±0.15a
油星壶菌属 Olpidiaster 0.02±0.02b 0.01±0.00b 6.47±1.36a 8.27±1.14a
被孢霉属 Mortierella 2.14±0.29b 0.88±0.03c 3.54±0.20a 3.91±0.23a
单孢菌属 Monosporascus 0.04±0.01c 0.01±0.00c 3.95±0.40b 4.66±0.06a
头孢菌属 Cephaliophora 5.71±0.45a 0.70±0.04b 0.80±0.08b 0.70±0.07b
链格孢属 Alternaria 2.40±0.29a 2.34±0.18a 0.32±0.01c 1.99±0.22b
Pseudaleuria 2.26±0.12b 3.38±0.08a 0.36±0.05d 0.62±0.04c
柄孢壳菌属 Podospora 0.50±0.06c 0.77±0.06c 3.50±0.25a 1.27±0.05b
隐球菌属 Cryptococcus 2.19±0.27a 1.38±0.04b 0.81±0.06c 1.03±0.11bc
根囊壶菌属 Rhizophlyctis 2.00±0.04a 2.46±0.34a 0.22±0.07b 0.59±0.10b
曲霉属 Aspergillus 0.36±0.01b 0.39±0.02b 1.46±0.12a 1.30±0.10a
单格孢属 Monodictys 0.68±0.03b 2.01±0.22a 0.29±0.07c 0.42±0.04bc
嗜热真菌属 Thermomyces 0.05±0.01c 0.07±0.01c 1.59±0.08a 1.20±0.07b
嗜热链球菌属 Mycothermus 0.09±0.02b 0.07±0.01b 1.32±0.13a 1.18±0.05a

Table 2

Effect of wheat root exudates on the OTU level of fungal in watermelon soil"

OTU编号
OTU ID
门水平
Phylum
属水平
Genus
相对丰度Relative abundance (%)
NC NR WC WR
OTU881 子囊菌门 Ascomycota 丝壳属 Kernia 22.45±1.40a 23.61±1.29a 2.25±0.10b 4.85±0.21b
OTU1011 子囊菌门 Ascomycota 毛壳菌属 Chaetomium 8.40±0.81c 7.73±0.38c 14.46±0.67b 17.32±0.59a
OTU925 子囊菌门 Ascomycota 假霉样真菌属 Pseudallescheria 5.55±0.45c 2.85±0.09d 10.79±0.29b 11.76±0.22a
OTU322 子囊菌门 Ascomycota 镰刀菌属 Fusarium 1.60±0.02c 1.09±0.03c 12.24±0.34a 5.26±0.42b
OTU221 子囊菌门 Ascomycota 腐质霉属 Humicola 3.65±0.22b 3.08±0.18b 5.63±0.27a 5.43±0.15a
OTU894 子囊菌门 Ascomycota 枝顶孢属 Acremonium 1.89±0.10b 13.50±0.43a 0.10±0.01c 0.18±0.03c
OTU20 壶菌门 Chytridiomycota 油星壶菌属 Olpidiaster 0.02±0.02b 0.01±0.00b 6.43±1.34a 8.22±1.13a
OTU225 子囊菌门 Ascomycota 单孢菌属 Monosporascus 0.03±0.01c 0.01±0.00c 3.93±0.40b 4.65±0.06a
OTU965 子囊菌门 Ascomycota 头孢菌属 Cephaliophora 5.69±0.44a 0.68±0.04b 0.79±0.09b 0.49±0.08b
OTU168 子囊菌门 Ascomycota 镰刀菌属 Fusarium 0.93±0.04c 0.90±0.04c 3.19±0.08a 2.11±0.06b
OTU732 子囊菌门 Ascomycota 链格孢属 Alternaria 2.40±0.29a 2.33±0.18a 0.32±0.01b 1.98±0.22a
OTU774 子囊菌门 Ascomycota 柄孢壳菌属 Podospora 0.28±0.03c 0.43±0.04c 3.38±0.26a 1.13±0.03b
OTU320 接合菌门 Zygomycota 被孢霉属 Mortierella 0.86±0.08b 0.29±0.04c 2.04±0.18a 1.79±0.06a
OTU485 担子菌门 Basidiomycota 隐球菌属 Cryptococcus 1.80±0.21a 1.34±0.04b 0.77±0.05c 0.99±0.12bc
OTU663 子囊菌门 Ascomycota Pseudaleuria 1.57±0.12b 2.86±0.08a 0.23±0.04c 0.22±0.03c
OTU422 壶菌门 Chytridiomycota 根囊壶菌属 Rhizophlyctis 1.22±0.04b 2.30±0.31a 0.03±0.01c 0.05±0.01c
OTU1100 子囊菌门 Ascomycota 枝顶孢属 Acremonium 1.47±0.13a 0.86±0.06b 0.50±0.05c 0.57±0.05c
OTU878 子囊菌门 Ascomycota 单格孢属 Monodictys 0.67±0.03b 2.01±0.22a 0.29±0.07c 0.42±0.04bc
OTU196 子囊菌门 Ascomycota 丝壳属 Kernia 1.03±0.15a 0.50±0.03c 0.77±0.04b 0.99±0.04ab
OTU910 子囊菌门 Ascomycota 丝壳属 Kernia 1.06±0.08a 0.73±0.07b 0.48±0.01c 0.70±0.04b
OTU277 接合菌门 Zygomycota 被孢霉属 Mortierella 0.71±0.11b 0.29±0.05c 0.82±0.03b 1.09±0.08a
OTU247 子囊菌门 Ascomycota 嗜热真菌属 Thermomyces 0.04±0.01c 0.05±0.00c 1.57±0.09a 1.18±0.07b
OTU1073 子囊菌门 Ascomycota 嗜热链球菌属 Mycothermus 0.09±0.02b 0.07±0.01b 1.32±0.13a 1.18±0.05a
OTU502 子囊菌门 Ascomycota 丝壳属 Kernia 0.69±0.01b 1.00±0.07a 0.38±0.02c 0.36±0.01c

Table 3

Effects of wheat root exudates on the community structure of Fusarium and Trichoderma spp. in watermelon soils"

属水平
Genus
OTU编号
OTU ID
处理Treatment
NC NR WC WR
镰刀菌属 Fusarium spp. OTU322 1.60±0.02c 1.09±0.03c 12.24±0.34a 5.26±0.42b
OTU168 0.93±0.04c 0.90±0.04c 3.19±0.08a 2.11±0.06b
OTU827 0.08±0.02c 0.27±0.03a 0.17±0.03b 0.23±0.01ab
OTU17 0.06±0.01c 0.09±0.01bc 0.11±0.01b 0.15±0.02a
OTU843 0.03±0.00b 0.14±0.04a 0.10±0.01a 0.09±0.01ab
OTU137 0.01±0.01b 0.00±0.00b 0.11±0.02a 0.07±0.02a
OTU199 0.01±0.00b 0.02±0.01ab 0.05±0.02a 0.05±0.01ab
OTU1116 0.01±0.01a 0.01±0.00a 0.05±0.03a 0.03±0.01a
OTU595 0.01±0.01ab 0.01±0.01b 0.02±0.00ab 0.03±0.01a
OTU71 0.01±0.00b 0.01±0.00b 0.01±0.01ab 0.04±0.02a
OTU738 0.01±0.01a 0.00±0.00a 0.00±0.00a 0.00±0.00a
OTU327 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.01±0.01a
OTU307 0.00±0.00b 0.00±0.00b 0.01±0.00a 0.00±0.00b
木霉属 Trichoderma spp. OTU917 0.01±0.01c 0.00±0.00c 0.14±0.01a 0.09±0.03b
OTU958 0.00±0.01b 0.01±0.00b 0.09±0.02a 0.08±0.04a
OTU149 0.00±0.00b 0.00±0.00ab 0.01±0.00a 0.01±0.00ab

Fig. 4

Effects of wheat root exudates on the principal coordinate analysis of fungi in watermelon soil"

[1] 张晓晓 . 小麦伴生对西瓜枯萎病和根际土壤微生物的影响[D]. 哈尔滨: 东北农业大学, 2017.
ZHANG X X . Effect of watermelon with companion wheat on Fusarium wilt of watermelon and soil microorganism[D]. Harbin: Northeast Agricultural University, 2017. ( in Chinese)
[2] MA Y Q . Allelopathic studies of common wheat (Triticum aestivum L.). Weed Biology and Management, 2005,5(3):93-104.
[3] LV H F, CAO H S, NAWAZ M A, SOHAIL H, HUANG Y, CHENG F, KONG Q S, BIE Z L . Wheat intercropping enhances the resistance of watermelon to Fusarium wilt. Frontiers in Plant Science, 2018,9:696.
[4] LI C X, FU X P, ZHOU X G, LIU S W, XIA Y, LI N H, ZHANG X X, WU F Z. Treatment with wheat root exudates and soil microorganisms from wheat/watermelon companion cropping can induce watermelon disease resistance against Fusarium oxysporum f. sp. niveum. Plant Disease, 2019: PDIS08181387RE.
[5] LI X G, DING C F, HUA K, ZHANG T L, ZHANG Y N, ZHAO L, YANG Y R, LIU J G, WANG X X . Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biology & Biochemistry, 2014,78:149-159.
[6] PATERSON E, GEBBING T, ABEL C, SIM A, TELFER G . Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 2007,173(3):600-610.
[7] 郝文雅, 冉炜, 沈其荣, 任丽轩 . 西瓜、水稻根分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响. 中国农业科学, 2010,43(12):2443-2452.
HAO W Y, RAN W, SHEN Q R, REN L X . Effects of root exudates from watermelon, rice plants and phenolic acids on Fusaruin oxysporum f. sp. niveum. Scientia Agricultura Sinica, 2010,43(12):2443-2452. (in Chinese)
[8] BAIS H P, WEIR T L, PERRY L G, GILROY S, VIVANCO J M . The role of root exudates in rhizosphere interations with plants and other organisms. Annual Review of Plant Biology, 2006,57:233-266.
[9] XU W H, WU F Z, CHANG C L, LIU S W, ZHOU Y . Effects of wheat as companion cropping on growth, soil enzymes and disease resistance of watermelon. Allelopathy Journal, 2013,32(2):267-278.
[10] ZHANG H, MALLIK A, ZENG R S . Control of panama disease of banana by rotating and intercropping with Chinese Chive (Allium tuberosum Rottler): Role of plant volatiles. Journal of Chemical Ecology, 2013,39(2):243-252.
[11] ZHOU X G, LIU J, WU F Z . Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 2017,415(1/2):507-520.
[12] CHRISTOPHER D J, RAJ T S, RANI S U, UDHAYAKUMAR R . Role of defense enzymes activity in tomato as induced by Trichoderma virens against Fusarium wilt caused by Fusarium oxysporum f sp. lycopersici. Journal of Biopesticides, 2010,3(1):158-162.
[13] HARMAN G E . Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 2006,96(2):190-194.
[14] PIETERSE C M J, ZAMIOUDIS C, BERENDSEN R L, WELLER D M, WEES S C M V, BAKKER P A H M . Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 2014,52(52):347-375.
[15] KOMY M H E L, SALEH A A, ERANTHODI A, MOLAN Y Y . Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathology Journal, 2015,31(1):50-60.
[16] MA L J, GEISER D M, PROCTOR R H, ROONEY A P, O'DONNELL K, TRAIL F, GARDINER D M, MANNERS J M, KAZAN K, . Fusarium pathogenomics. Annual Review of Microbiology, 2013,67(1):399-416.
[17] XU W H, LIU D, WU F Z, LIU S W . Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. European Journal of Plant Pathology, 2015,141(1):209-216.
[18] REN L X, HUO H W, ZHANG F, HAO W Y, XIAO L, DONG C X, XU G H . The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense. Plant Signaling & Behavior, 2016,11:e1187357.
[19] XU W H, WANG Z G, WU F Z . The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon. Frontiers in Microbiology, 2015,6:899.
[20] LI H Y, ZHOU X G, WU F Z . Effects of root exudates from potato onion on Verticillium dahliae. Allelopathy Journal, 2018,43(2):217-222.
[21] FU X P, WU X, ZHOU X G, LIU S W, SHEN Y H, WU F Z . Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae. Frontiers in Plant Science, 2015,6:726.
[22] OP DE BEECK M O, LIEVENS B, BUSSCHAERT P, DECLERCK S, VANGRONSVELD J, COLPAERT J V . Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE, 2014,9(6):1-11.
[23] HAGN A, WALLISCH S, RADL V, MUNCH J C, SCHLOTER M . A new cultivation independent approach to detect and monitor common Trichoderma species in soils. Journal of Microbiological Methods, 2007,69(1):86-92.
[24] LIN Y H, CHEN K S, CHANG J Y, WAN Y L, HSU C C, HUANG J W, CHANG P F L. Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnology, 2010,27(4):409-418.
[25] LEMONS A R, BARNES C S, GREEN B J. Comparative analysis of sanger and Illumina Miseq sequencing for determining indoor fungal diversity. Journal of Allergy and Clinical Immunology, 2017, 139(2):AB86.
[26] SAUPE S J, CLAVE C, BEGUERET J . Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Current Opinion in Microbiology, 2000,3(6):608-612.
[27] BERTIN C, YANG X H, WESTON L A . The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 2003,256(1):67-83.
[28] BROECKLING C D, BROZ A K, BERGELSON J, MANTER D K, VIVANCO J M . Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 2008,74(3):738-744.
[29] HAO W Y, REN L X, RAN W, SHEN Q R . Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum. Plant and Soil, 2010,336(1/2):485-497.
[30] GUYONNET J P, CANTAREL A A M, SIMON L, HAICHAR F E Z. Root exudation rate as functional trait involved in plant nutrient-use strategy classification. Ecology & Evolution, 2018,8(16):8573-8581.
[31] HODGE A, ROBINSON D, FITTER A . Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, 2000,5(7):304-308.
[32] EO J, PARK K C, KIM M H . Plant-specific effects of sunn hemp (Crotalaria juncea) and sudex (Sorghum bicolor×Sorghum bicolor var. sudanense) on the abundance and composition of soil microbial community. Agriculture Ecosystems & Environment, 2015,213:86-93.
[33] PURNAK T, BEYAZIT Y, SAHIN G O, SHORBAGI A, AKOVA M . A novel fungal pathogen under the spotlight-Acremonium spp. associated fungaemia in an immunocompetent host. Mycoses, 2011,54(1):78-80.
[34] GLARE T R, GARTRELL B D, BROOKES J J, PERROTT J K . Isolation and identification of Aspergillus spp. from Brown Kiwi (Apteryx mantelli) nocturnal houses in New Zealand. Avian Diseases, 2014,58(1):16-24.
[35] GUILHERTNETTI E, TAKAHACHI G, SHINOBU C S, ESTIVALET SVIDZINSKI T I. Fusarium spp. as agents of onychomycosis in immunocompetent hosts. International Journal of Dermatology, 2007,46(8):822-826.
[36] DAO T H . Sorption and mineralization of plant phenolic acids in soil. Acs Symposium, 1987,190(1):358-370.
[37] HU L F, ROBERT CL A M, CADOTL S, ZHANGL X, YEL M, LI BL B, MANZOL D, CHERVETL N, STEINGERL T, VAN DER HEIJDEN ML G A, SCHLAEPPIL K, ERBL M. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018,9(1):1-13.
[38] INDERJIT. Soil microorganisms: An important determinant of allelopathic activity. Plant and Soil, 2005,274(1/2):227-236.
[39] ZWETSLOOT M J, KESSLER A, BAUERLE T L . Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytologist, 2018,218(2):530-541.
[40] HANSEN K, PERRY B A, DRANGINIS A W, PFISTER D H . A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Molecular Phylogenetics and Evolution, 2013,67(2):311-335.
[41] IKEDA R, SUGITA T, SHINODA T . Serological relationships of Cryptococcus spp.: Distribution of antigenic factors in Cryptococcus and intraspecies diversity. Journal of Clinical Microbiology, 2000,38(11):4021-4025.
[42] ZHAO Y P, LIN S, CHU L X, GAO J T, AZEEM S, LIN W X . Insight into structure dynamics of soil microbiota mediated by the richness of replanted Pseudostellaria heterophylla. Scientific Reports, 2016,6:1-9.
[43] LOMBARDI N, VITALE S, TURRÃ D, REVERBERI M, FANELLI C, VINALE F, MARRA R, RUOCCO M, PASCALE A, D'ERRICO G, WOO S L, LORITO M . Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Molecular Plant-Microbe Interactions, 2018,31(10):982-994.
[44] WOO S L, PEPE O . Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 2018,9:1801.
[45] HERMOSA R, VITERBO A, CHET I, MONTE E . Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 2012,158(1):17-25.
[46] GHORBANI R, WILCOCKSON S, KOOCHEKI A, LEIFERT C . Soil management for sustainable crop disease control: A review. Environmental Chemistry Letters, 2008,6(3):149-162.
[47] BORGES R C F, MACEDO M A, CABRAL C S, ROSSATO M, FONTES M G, SANTOS M D M, FERREIRA M A, FONSECA M E N, REIS A, BOITEUX L S . Vascular wilt of teak(Tectona grandis) caused by Fusarium oxysporum in Brazil. Phytopathologia Mediterranea, 2018,57(1):115-121.
[48] HAFIZI R, SALLEH B, LATIFFAH Z . Morphological and molecular characterization of Fusarium solani and F. oxysporum associated with crown disease of oil palm. Brazilian Journal of Microbiology, 2013,44(3):959-968.
[1] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[2] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[3] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[4] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[5] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[6] LIU HaiYang, WANG Wei, ZHANG RenFu, RAXIDA ·ABDURAHMAN, YAO Ju. Fungal Community Structure of Cotton-Field Soil Under Different Incidences of Cotton Verticillium Wilt [J]. Scientia Agricultura Sinica, 2019, 52(3): 455-465.
[7] LIU ShuSen,MA HongXia,GUO Ning,SHI Jie,ZHANG HaiJian,SUN Hua,JIN Ge. Analysis of Main Pathogens and Dominant Species of Maize Stalk Rot in the Main Summer Maize Producing reas of Huang-Huai-Hai [J]. Scientia Agricultura Sinica, 2019, 52(2): 262-272.
[8] DAI HongCui,ZHANG Hui,XUE YanFang,GAO YingBo,QIAN Xin,ZHAO HaiJun,CHENG Hao,LI ZongXin,LIU KaiChang. Response of Fungal Community and Function to Different Tillage and Straw Returning Methods [J]. Scientia Agricultura Sinica, 2019, 52(13): 2280-2294.
[9] DU Qing, TANG ZhaoLei, LI ShiChu, SHANGGUAN LingLing, LI HuaJiao, DUAN CanXing. Composition of Fusarium Species Causing Maize Ear Rot and Analysis of Toxigenic Chemotype in Guangxi [J]. Scientia Agricultura Sinica, 2019, 52(11): 1895-1907.
[10] JI WanLi, ZHU HongJu, LU XuQiang, ZHAO ShengJie, HE Nan, GENG LiHua, LIU WenGe. The Mechanism of Resistance to Fusarium oxysporum f. sp. niveum Race 1 in Tetraploid Watermelon [J]. Scientia Agricultura Sinica, 2018, 51(19): 3750-3765.
[11] CHI YingYing, GAO Peng, ZHU ZiCheng, LUAN FeiShi, LI GuiYing, YU Peng. The QTL Analysis of Fruit and Seed Associated Traits in Watermelon Based on CAPS Markers [J]. Scientia Agricultura Sinica, 2017, 50(7): 1282-1293.
[12] LI Na, WANG JiMing, SHANG JianLi, LI NanNan, XU YongYang, MA ShuangWu. Fine-mapping of QTL and Development of InDel Markers for Fusarium oxysporum Race 1 Resistance in Watermelon [J]. Scientia Agricultura Sinica, 2017, 50(1): 131-141.
[13] HAN Zhe, XU Li-hong, LIU Cong, KONG Ling-kun, WU Feng-zhi, PAN Kai. Effect of Wheat Residues on Growth and Rhizosphere Microorganisms of Continuously Monocropped Watermelon [J]. Scientia Agricultura Sinica, 2016, 49(5): 952-960.
[14] HAN Jin-huan, WANG Li-xia, GAO Hong-bo, Lü Gui-yun. Cloning and Expression Analysis of Fusarium Wilt Resistance- Related Gene ClMYB Transcription Factor from Citrullus lanatus [J]. Scientia Agricultura Sinica, 2016, 49(17): 3359-3369.
[15] CHEN Zhe, SONG Ge, ZHOU Xue-ping, WU Jian-xiang. Preparation and Application of Monoclonal Antibodies Against Watermelon mosaic virus (WMV) [J]. Scientia Agricultura Sinica, 2016, 49(14): 2711-2724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!