Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (8): 1556-1567.doi: 10.3864/j.issn.0578-1752.2018.08.013

• HORTICULTURE • Previous Articles     Next Articles

Effects of Intercropping Reineckia Carnea on Soil Enzyme Activity and Kiwifruit Fruit Yield, Quality in Kiwifruit Orchard

ZHANG Cheng1, WANG QiuPing2, ZHOU KaiTuo3, WU XiaoMao1, LONG YouHua1, LI JiaoHong1, YIN XianHui1   

  1. 1College of Agriculture, Guizhou University, Guiyang550025; 2Guizhou Vocational College of Agriculture, Qingzhen 551400, Guizhou; 3Rural Work Bureau of Fuquan City, Fuquan 550599, Guizhou
  • Received:2017-09-05 Online:2018-04-16 Published:2018-04-16

Abstract: 【Objective】The objective of this study was to investigate the effects of intercropping Reineckia carnea (R. carnea)on the soil microorganism quantity, enzyme activity, kiwifruit fruit yield and quality in kiwifruit orchard, and their correlations were studied, so as to provide a scientific basis of enriching the ecological theory, planting the high quality of kiwifruit and applying the cultivation model of intercropping R. carnea in kiwifruit orchard.【Method】 R. carnea was intercropped in kiwifruit orchard, and non-intercropping as a control. The investigation about populations of bacteria, actinomycete and fungus, activities of urease, sucrase, phosphatase and catalase, water content in the rhizosphere soil of kiwifruit trees at different growth stages, as well as yield and quality of kiwifruit fruits, were carried out, as then the correlations between these parameters were analyzed. 【Result】The results showed that the rhizosphere soil microorganism numbers, four enzyme activities, water content in kiwifruit orchard were increased significantly, the yield of kiwifruit fruits was increased, and the quality of kiwifruit fruits was improved by intercropping R. carnea. There were the increase trend of the above-mentioned results with the extension of intercropping year. Compared with the control, numbers of bacteria, actinomycete and fungus in the rhizosphere soil intercroppedR. carnea for 4 years were increased by 27.85%-54.34%, 28.57%-96.05% and 16.39%-148.38%, respectively; soil urease, sucrase, phosphatase, catalase activities and water content increased by 0.20-0.61 times, 0.30-0.87 times, 0.41-0.65 times, 0.23-0.32 times and 0.05-0.16 times, respectively. Single fruit volume and yield increased by 3.26% and 4.88%, respectively, when the fruit were edible, its vitamin C, soluble solids, total soluble sugar, dry matter and titratable acid increased by 15.24%, 5.46%, 12.11%, 5.63% and 4.12%, respectively. Based on correlation analysis, soil microbial population showed a highly significant or significant positive correlation with urease and phosphatase activities in the rhizosphere soil of R. carnea, which was negatively correlated with catalase activity. And there was a significant correlation among soil microorganism number, enzyme activities, fruit weight and quality. 【Conclusion】The intercropping R. carnea in kiwifruit orchard could increase the soil microorganism populations, enzyme activities and kiwifruit yield, and improve the kiwifruit quality.

Key words: kiwifruit, Reineckia carnea (Andr.) Kunth, intercropping, enzyme activity of soil, yield, quality

[1]    刘建新, 王鑫, 杨建霞. 覆草对果园土壤腐殖质组成和生物学特性的影响. 水土保持学报, 2005, 19(4): 93-95.
Liu J X, Wang X, Yang J X. Effects of covering straw in orchard on humus composition and biological characteristics. Journal of Soil and Water Conservation, 2005, 19(4): 93-95. (in Chinese)
[2]    田永强, 曹之富, 张雪艳, 郭文忠, 梅秀云, 高丽红. 不同农艺措施下温室土壤酶活性的动态变化及其相关性分析. 植物营养与肥料学报, 2009, 15(4): 857-864.
Tian Y Q, Cao Z F, Zhang X Y, Guo W Z, Mei X Y, Gao L H. Changes of soil enzyme activities under different agricultural treatments in greenhouse and its correlation analysis. Journal of Plant Nutrition and Fertilizer, 2009, 15(4): 857-864. (in Chinese)
[3]    徐凌飞, 韩清芳, 吴中营, 魏鹏, 杨宝平, 聂俊峰. 清耕和生草梨园土壤酶活性的空间变化. 中国农业科学, 2010, 43(23): 4977-4982.
Xu L F, Han Q F, Wu Z Y, Wei P, Yang B P, Nie J F. Spatial variability of soil enzyme activity in pear orchard under clean and sod cultivation models. Scientia Agricultura Sinica, 2010, 43(23): 4977-4982. (in Chinese)
[4]    陈世昌, 侯殿明, 吴文祥, 孙文英, 邱立友. 梨园套种平菇对土壤生物活性及果实品质的影响. 果树学报, 2012, 29(4): 583-588.
Chen S C, Hou D M, Wu W X, Sun W Y, Qiu L Y. Influence of Intercropping Pleurotus ostreatus on soil biological activity and fruit quality in pear orchard. Journal of Fruit Science, 2012, 29(4): 583-588. (in Chinese)
[5]    周潇. 不同生态型吉样草对光照和养分反应的研究[D]. 雅安: 四川农业大学, 2007.
ZHOU X. Study on the response to sunlight and nutrition of reineckia carner in different habitat [D]. Ya’an: Sichuan Agricultural University, 2007. (in Chinese)
[6]    田源红, 张永萍, 李玮, 徐剑, 王建科, 刘赟. HPLC 法同时测定吉祥草中阿魏酸及芦丁. 中成药, 2015, 37(3): 603-606.
TIAN Y H, ZHANG Y P, LI W, XU J, WANG J K, LIU Y. Determination of ferulic acid and rutin in reineckia carner (Andr.) Kunth. by HPLC. Chinese Traditional Patent Medicine, 2015, 37(3): 603-606. (in Chinese)
[7]    王艺纯, 张春玲, 黄婷, 曹云峰, 刘志惠, 韩娜, 殷军. 观音草的化学成分研究. 中国药物化学杂志, 2010, 20(2): 119-124.
WANG Y C, ZHANG C L, HUANG T, CAO Y F, LIU Z H, HAN N, YIN J. The chemical constituents from Reineckia carner (Andr.) Kunth. Chinese Journal of Medicinal Chemistry, 2010, 20(2): 119-124. (in Chinese)
[8]    龙友华, 张承, 龚芬, 吴小毛, 尹显慧. 叶面施硒对猕猴桃含硒量、镉铅积累及品质的影响. 食品科学, 2016, 37(11): 74-78.
LONG Y H, ZHANG C, GONG F, WU X M, YIN X H. Effects of foliar application of selenium fertilizer on selenium content, accumulation of cadmium and lead, and fruit quality of kiwifruit. Food Science, 2016, 37(11): 74-78. (in Chinese)
[9]    张承, 李明, 龙友华, 吴小毛. 采前喷施壳聚糖复合膜对猕猴桃软腐病的防控及其保鲜作用. 食品科学, 2016, 37(22): 274-281. 
ZHANG C, LI M, LONG Y H, WU X M. Control of soft rot in kiwifruit by pre-harvest application of chitosan composite coating and its effect on preserving and improving kiwifruit quality. Food Science, 2016, 37(22): 274-281. (in Chinese)
[10]   焦蕊, 赵同生, 贺丽敏, 许长新, 郝宝峰, 于丽辰. 自然生草和有机物覆盖对苹果园土壤微生物和有机质含量的影响. 河北农业科学, 2008, 12(12): 29-30, 48.
Jiao R, Zhao T S, He L M, Xu C X, Hao B F, Yu L C. Effect of self-sown grass and organic mulching on soil microorganism and organic content in Fuji apple orchard. Journal of Hebei Agricultural Sciences, 2008, 12(12): 29-30, 48. (in Chinese)
[11]   李会科, 张广军, 赵政阳, 李凯荣. 黄土高原旱地苹果园生草对土壤养分的影响. 园艺学报, 2007, 34(2): 477-480.
Li H K, Zhang G J, Zhao Z Y, Li K R. Effects of inter planting of herbage on soil nutrient of non-irrigated apple orchard in the Loess Plateau. Acta Horticulturae Sinica, 2007, 34(2): 477-480. (in Chinese)
[12]   殷瑞敬, 温晓霞, 廖允成, 黄金辉, 高茂盛. 耕作和覆盖对苹果园土壤酶活性的影响. 园艺学报, 2009, 36(5): 717-722.
Yin R J, Wen X X, Liao Y C, Huang J H, Gao M S. Effect of tillage and mulching on enzyme activities of apple orchard soil. Acta Horticulturae Sinica, 2009, 36(5): 717-722. (in Chinese)
[13]   龙妍, 惠竹梅, 程建梅, 庞学良. 生草葡萄园土壤微生物分布及土壤酶活性研究. 西北农林科技大学学报(自然科学版), 2007, 35(6): 99-103.
Long Y, Xi Z M, Cheng J M, Pang X L. Ecological distributing of soil microorganisms and activity of soil enzymes in vineyard green covering. Journal of Northwest A&F University (Natural Science Edition), 2007, 35(6): 99-103. (in Chinese)
[14]   惠竹梅, 岳泰新, 张瑾, 程建梅, 李华. 西北半干旱区葡萄园生草体系中土壤生物学特性与土壤养分的关系. 中国农业科学, 2011, 44(11): 2310-2317.
XI Z m, YUE T x, ZHANG J, CHENG J m, LI H. Relationship between soil biological characteristics and nutrient content under intercropping system of vineyard in northwestern semiarid area. Scientia Agricultura Sinica, 2011, 44(11): 2310-2317. (in Chinese)
[15]   司鹏, 乔宪生. 清耕和生草对沙地葡萄园土壤酶活性的空间影响. 果树学报, 2014, 31(2): 238-244.
SI P, QIAO X S. Effect of clean and sod cultivation on soil enzyme activity in sandy vineyard. Journal of Fruit Science, 2014, 31(2): 238-244. (in Chinese)
[16]   徐雄, 张健, 张猛, 廖尔华. 果-草人工生态系统中土壤微生物、土壤酶与土壤养分的关系. 水土保持学报, 2005, 19(6): 178-181.
Xu X, Zhang J, Zhang M, Liao E H. Relationship between biological factors and soil nutrients in artificial fruit-grass ecosystem. Journal of Soil and Water Conservation, 2005, 19(6): 178-181. (in Chinese)
[17]   Moreno B, Garcia-Rodriguez S, Cañizares R, Castro J, Benítez E. Rainfed olive farming in south-eastern Spain: Long-term effect of soil management on biological indicators of soil quality. Agriculture, Ecosystems and Environment, 2009, 131: 333-339.
[18]   FLOCH C, CAPapowiez Y, Criquet S. Enzyme activities in apple orchard agroecosystems: How are they affected by management strategy and soil properties. Soil Biology and Biochemistry, 2009, 41(1): 61-68. 
[19]   Rajkumar M, Ae N, Prasad M N, Freitas H. Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 2010, 28(3): 142-149.
[20]   Acosta M V, Burow C, Zobeck T M, Allen V G. Soil microbial community and function in alternative systems to continuous cotton. Soil Science Society of America Journal, 2010, 74(4): 1181-1192.
[21]   胡开辉. 微生物学实验. 北京: 中国林业出版社, 2004: 35-38.
HU K H. Microbiology Experiment. Beijing: China Forestry Press, 2004: 35-38. (in Chinese)
[22]   关松荫. 土壤酶及研究方法. 北京: 中国农业出版社, 1986: 274-332.
GUAN S Y. Soil Enzyme and Research Method. Beijing: China Agriculture Press, 1986: 274-332. (in Chinese)
NIE J Y. Fruit Quality and Safety Analysis Technique. Beijing: Chemical Industry Press, 2009. (in Chinese)
[24]   Vepsäläinen M, Erkomaa K, Kukkonen S, Vestberg M, Wallenius K, Niemi R M. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure. Plant and Soil, 2004, 264: 273-286.
[25]   Niemi R M, Vepsäläinen M, Wallenius K, Simpanen S, Alakukku L, Pietola L. Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Applied Soil Ecology, 2005, 30: 113-125.
[26]   YAN H, NA D, JIACHUN S, MAN W, HONG L, JIANMING X. Profiling of microbial PLFAs: Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils. Soil Biology & Biochemistry, 2013, 57: 625-634.
[27]   ZHAO J, ZENG Z X, HE X Y, CHEN H S, WANG K L. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. European Journal of Soil Biology, 2015, 68: 61-68.
[28]   王华, 王辉, 赵青云, 庄辉发, 宋应辉, 朱自慧. 槟郎不同株行距间作香草兰对土壤养分和微生物的影响. 植物营养与肥料学报, 2013, 19(4): 988-994.
WANG H, WANG H, ZHAO Q Y, ZHUANG H F, SONG Y H, ZHU Z H. Influence of different planting spacing of areca nut intercropping with Vanilla on soil microbes and nutrients. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 988-994. (in Chinese)
[29]Narula N, Kothe E, Kumar Beh R. Role of root exudates in plant-microbe interactions. Journal of Applied Botany and Food Quality, 2009, 82: 122-130.
[30]   Shukla K P, Sharma S, Singh N K, Singh V, Tiwari K, Singh S. Nature and role of root exudates: Efficacy in bioremediation. African Journal of Biotechnology, 2013, 10(48): 9717-9724.
[31]   KENNEDY A C, SMITH K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170: 75-86.
[32]   高玉峰, 贺字典. 影响土壤真菌多样性的土壤因素. 中国农学通报, 2010, 26(10): 177-181.
GAO Y F, HE Z D. Study on soils effect factors to fungi diversity in hebei province. Chinese Agricultural Science Bulletin, 2010, 26(10): 177-181. (in Chinese)
[33]   付学鹏, 吴凤芝, 吴瑕, 刘丹. 间套作改善作物矿质营养的机理研究进展. 植物营养与肥料学报, 2016, 22(2): 525-535.
FU X P, WU F Z, WU X, LIU D. Advances in the mechanism of improving crop mineral nutrients in intercropping and relay intercropping systems. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 525-535. (in Chinese)
[34]   Reboreda R, Caçador I. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Marine Environmental Research, 2008, 65: 77-84.
[35]   Duarte B, Reboreda R, Caçador I. Seasonal variation of extracellular enzymatic activity and its influence on metal speciation in a polluted salt marsh. Chemosphere, 2008, 73: 1056-1063.
[36]   杨恒山, 张庆国, 邰继承, 葛选良, 王娜娜. 种植年限对紫花苜蓿地土壤 pH 值和磷酸酶活性的影响. 中国草地学报, 2009, 31(1): 32-35.
Yang H S, Zhang Q G, Tai J C, Ge X L, Wang N N. Effects of growth years on soil pH and phosphatase activities in alfalfa fields. Chinese Journal of Grassland, 2009, 31(1): 32-35. (in Chinese)
[37]   赵小亮, 刘新虎, 贺江舟, 万传星, 龚明福, 张利莉. 棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响. 西北植物学报, 2009, 29(7): 1426-1431.
ZHAO X L, LIU X H, HE J Z, WAN C X, GONG M F, ZHANG L L. Effects of cotton root exudates on available soil nutrition, enzyme activity and microorganism quantity. Acta Botanica Boreali- Occidentalia Sinica, 2009, 29(7): 1426-1431. (in Chinese)
[38]   马建军, 李青丰, 张树礼. 沙棘与不同类型植被配置下土壤微生物、养分特征及相关性研究. 干旱区资源与环境, 2007, 21(6): 163-167.
Ma J J, Li Q F, Zhang S L. The correlation among soil microorganism and soil nutrient in different types of mixed stands of Hippophae rhamnoides. Journal of Arid Land Resources and Environment, 2007, 21(6): 163-167. (in Chinese)
[39]   安韶山, 黄懿梅, 李壁成, 刘梦云. 用典范相关分析研究宁南宽谷丘陵区不同土地利用方式土壤酶活性与肥力因子的关系. 植物营养与肥料学报, 2005, 11(5): 704-709. 
An S S, Huang Y M, Li B C, Liu M Y. The relation between soil enzyme activities and soil properties of difference and use way in Loess Hilly region by canonical correlation analysis. Journal of Plant Nutrition and Fertilizer Science, 2005, 11(5): 704-709. (in Chinese)
[40]   Hinojosa M B, Carreira J A, García-ruíz R, Dick R P. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biology and Biochemistry, 2004, 36 (10): 1559-1568.
[41]   Richardson A E, Barea J M, McNeill A M, Prigent- Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321: 305-339.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!