中国农业科学 ›› 2018, Vol. 51 ›› Issue (16): 3214-3225.doi: 10.3864/j.issn.0578-1752.2018.16.017

所属专题: 加强环境生理研究应用 支撑畜禽养殖绿色发展

• 畜牧·兽医·资源昆虫 • 上一篇    下一篇

畜禽养殖场颗粒物污染特征及其危害呼吸道健康的研究进展

戴鹏远,沈丹,唐倩,李延森,李春梅   

  1. 南京农业大学动物科技学院,南京 210095
  • 收稿日期:2018-04-11 出版日期:2018-08-16 发布日期:2018-08-16
  • 通讯作者: 李春梅,Tel:025-84395971;E-mail:chunmeili@njau.edu.cn
  • 作者简介:戴鹏远,Tel:025-84395971;E-mail:2015205015@njau.edu.cn
  • 基金资助:
    “十三五”国家重点研发计划(2016YFD0500505);国家自然科学基金(31772648)

Research Progress on Characteristics of Particulate Matter in Livestock Houses and Its Harmful Effects on Respiratory Tract Health of Livestock and Poultry

DAI PengYuan, SHEN Dan, TANG Qian, LI YanSen, LI ChunMei   

  1. College of Animal Science & Technology Nanjing Agricultural University, Nanjing 210095
  • Received:2018-04-11 Online:2018-08-16 Published:2018-08-16

摘要: 随着畜禽养殖集约化程度的提高,高密度饲养引起畜禽养殖场空气质量问题日益突出,特别是养殖舍内环境颗粒物(particulate matter:PM)污染引起的家畜呼吸道健康问题不容忽视。畜禽养殖生产过程中可产生大量PM,已成为大气细颗粒物PM2.5(空气动力学直径小于等于2.5 μm)和PM10(空气动力学直径小于等于10 μm)的重要来源,影响大气环境空气质量。畜禽养殖场的PM主要来源于饲料、粪便、羽毛、皮屑等,其成分主要是有机物,含有C、H、O、N、S、Ca、Na、Mg、Al和K等多种元素;PM表面还附着细菌、真菌、病毒等多种微生物以及内毒素、氨气、硫化氢等有害物质。畜禽养殖舍PM的产生和释放受到家畜的种类、日龄、活动以及季节等多种因素的影响,鸡舍内PM的浓度高于猪舍,冬季舍内PM的浓度高于夏季。但是,目前缺少标准化设备和标准方法来测量不同类型的畜禽舍PM的浓度和排放水平。畜禽养殖舍PM的成分复杂,具有很强的生物学效应,严重危害家畜的健康和生产。畜禽舍内高浓度PM主要通过以下3种形式影响呼吸道健康,一是PM直接刺激呼吸道,降低机体对呼吸系统疾病的免疫抵制;其次是PM表面附着的多种化合物的刺激;第三种是PM表面的病原性和非病原性微生物的刺激。目前关于PM对呼吸道健康危害机制的研究主要集中在PM对呼吸道的致炎作用,研究发现:PM通过刺激肺泡巨噬细胞产生前炎症因子,继而诱发其它细胞释放炎症因子,引起肺发生炎症反应;另外,PM2.5通过引起肺组织细胞发生氧化应激,激活丝裂原活化蛋白激酶 (MAPKs)活性,上调核转录因子κB (NFκB) 和转录激活因子AP-1的表达而诱发肺的炎症; PM2.5也可通过激活模式识别受体Toll样受体TLR2和TLR4的表达,激活NFκB信号通路而导致炎症的发生。也有研究发现,PM2.5在诱导呼吸道炎症的同时,还会激活细胞自噬和核因子相关因子-2 (nuclear factor E2-related factor 2,Nrf2)相关信号通路,这为缓解和治疗PM引起细胞损伤提供了靶点。尽管PM危害呼吸道健康的机制研究较多,但是PM成分复杂,并处在不断变化中,因此PM诱导呼吸道损伤的机制也十分复杂,仍需进一步系统深入研究。畜禽养殖生产过程中释放的大量PM严重影响环境空气质量和家畜健康,而PM对环境和家畜健康的危害程度与其组成和浓度密切相关。因此,正确认识畜禽舍PM的形态、大小、组成、浓度水平及其形成排放影响因素,对确定畜禽舍PM的来源和PM的毒性危害具有重要意义。文章就畜禽生产过程中产生的PM的来源、化学组成、浓度、排放、影响因素,以及PM对呼吸道功能的影响及作用机制作一综述,为正确评估PM对畜禽健康生产的影响提供参考依据。

关键词: 畜禽舍, 颗粒物, 污染特征, 呼吸道危害

Abstract: With the improvement of livestock and poultry intensive breeding, high density breeding livestock and poultry farms air quality problem becomes increasingly prominent. The livestock production process can generate a large number of PM, which has become an important source of fine particulate PM2.5 (aerodynamic diameter ≤ 2.5 μm) and PM10 (aerodynamic diameter ≤ 10 μm ) in atmosphere, affecting the air quality and the health of livestock seriously. PM in livestock houses is mainly organic and mainly from feed, feces, feathers, dander, containing C, H, O, N, S, Ca, Na, Mg, Al, K, and other elements; the surface of PM also adheres to bacteria, fungi, viruses, endotoxins, ammonia gas, hydrogen sulfide and other harmful substances. It was found that PM concentration in chicken house was higher than that in pig house; PM concentration in livestock houses was positively correlated with the age and activity of animals; PM concentration in winter was higher than that in summer. However, there is a lack of standardized equipment and standard methods to measure PM concentration and emission levels in different types of livestock and poultry houses. PM components in livestock houses are complex and have strong biological effects, which seriously hazard the health and animal production. High PM concentration in livestock houses affects respiratory health mainly in the following three forms: the directly stimulation of PM to respiratory tract which reduces the immune resistance of the body to respiratory diseases; the stimulation of various compounds attached to PM surface; the stimulation of pathogenic and non-pathogenic microorganisms on PM surfaces. At present, studies on the mechanism of PM on respiratory health hazards mainly focus on the inflammatory effect of PM on respiratory tract Studies showed that, PM could induce cells to release inflammatory factors and cause lung inflammation reaction through the proinflammatory factor produced by alveolar macrophages stimulated by PM. In addition, PM2.5 upregulated the expression of nuclear transcription factor κB (NFκB) and transcription activator AP-1 by mitogen-activated protein kinase (MAPKs) which was activated by oxidative stress. PM2.5 could also identify the toll-like receptor 2 and 4 by activating the mode of activation, and activate the NFκB signaling pathway, leading to the occurrence of inflammation. Studies have also found that the cell autophagy and nuclear factor related factor - 2 (nuclear factor E2 - related factor 2, Nrf2) related signaling pathways would be activated during the process of inflammation induced by PM2.5, which provided the targets for treatment of cell damage induced by PM2.5. Although there were more study on mechanism of hazard of PM to the health of respiratory tract, the PM composition was complicated, and in a constantly changing, so the PM induced respiratory damage mechanism was very complex and need further study. A large number of PM released in the process of livestock production seriously affects the environmental air quality and the health of livestock, and the extent of PM's harm to the environment and the health of livestock was closely related to its composition and concentration. Therefore, a proper understanding of PM morphology, size, composition, concentration level and emission influencing factors of animal house is of great significance to the determination of PM source and hazard caused by PM toxicity. In this paper, the source, chemical composition, concentration, discharge, influence factors, and the effects on respiratory function of PM from animal house are summarized, and offer a base for evaluating the effect of PM on healthy production of livestock and poultry.

Key words: livestock house, particulate matter, pollution characteristics, respiratory tract damage