中国农业科学 ›› 2018, Vol. 51 ›› Issue (16): 3040-3059.doi: 10.3864/j.issn.0578-1752.2018.16.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆抗大豆花叶病毒病基因研究进展

王大刚1,李凯2,智海剑2

 
  

  1. 1安徽省农业科学院作物研究所/安徽省农作物品质改良重点实验室,合肥 2300312南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,南京 210095
  • 收稿日期:2018-04-07 出版日期:2018-08-16 发布日期:2018-08-16
  • 通讯作者: 智海剑,Tel:025-84396463;E-mail:zhj@njau.edu.cn
  • 作者简介:王大刚,Tel:0551-65149851;E-mail:smvwang@163.com
  • 基金资助:
    国家自然科学基金(31571687、31571690和31201235)、安徽省自然科学基金(1708085MC69)、国家大豆产业技术体系建设专项资金(CARS-04)、江苏省现代作物生产协同创新中心(JCIC-MCP)

Progresses of Resistance on Soybean Mosaic Virus in Soybean

WANG DaGang1, LI Kai2, ZHI HaiJian2   

  1. 1Crop Institute of Anhui Academy of Agricultural Sciences/Key Laboratory of Crop Quality Improvement of Anhui Province,  Hefei 230031; 2Soybean Research Institute of Nanjing Agriculture University/National Center for Soybean Improvement/    National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095
  • Received:2018-04-07 Online:2018-08-16 Published:2018-08-16

摘要: 大豆花叶病毒(soybean mosaic virus,SMV)病是严重危害世界大豆(Glycine max (L.) Merr.)生产的主要病害之一。近十年来,国内外关于大豆对SMV抗病基因的遗传标记定位、候选抗病基因的分析及大豆抗SMV的调控网络等研究取得许多新进展。大豆对SMV的抗性遗传主要分为数量抗性和质量抗性,其中数量抗性的遗传主要由1对加性主基因+加性-显性多基因共同控制;对不同SMV株系的质量抗性遗传分别由1对不同的显性基因控制。标记定位研究发现,大豆对SMV数量抗性位点主要分布在大豆的第6、10和13等染色体上。22个对SMV具有单显性质量抗性的基因位点已被标记定位在大豆的第2、6、13和14染色体上,且定位的多数抗病基因位点两侧标记间的物理距离都在1 Mb以内。其中第13染色体上的基因位点数最多,有Rsv1、Rsv5、RSC3Q、RSC11和RSC12等10个,定位在第2染色体上的基因位点有8个,如Rsv4、RSC5、RSC6、RSC7和RSC8等,第6和14染色体上各有2个基因位点,分别为RSC15、RSC18和Rsv3、RSC4。参考大豆全基因组序列(http://www.phytozome.net/soybean),利用生物信息学方法、表达谱分析及克隆测序技术等进一步缩小了大豆抗SMV候选基因的筛选范围。目前,在大豆第2染色体上确定的抗SMV候选基因主要有8个:Glyma.02G121400、Glyma.02G121500、Glyma.02G121600、Glyma.02G121800、Glyma.02G121900、Glyma.02G122000、Glyma.02G122100和Glyma.02G122200,在第6染色体上的是Glyma.06G182600,在第13和14染色体上的抗SMV候选基因分别有9个和6个:Glyma.13G184800、Glyma.13G184900、Glyma.13G187900、Glyma.13G190000、Glyma.13G190300、Glyma.13G190400、Glyma.13G190800、Glyma.13G194700、Glyma.13G195100和Glyma.14G204500、Glyma.14G204600、Glyma.14G204700、Glyma.14G205000、Glyma.14G205200、Glyma.14G205300。基于病毒诱导的基因沉默VIGS(virus induced gene silencing,VIGS)和转基因操作等技术,研究发现抗SMV相关基因GmHSP40、GmPP2C3a、GmAKT2、GmCnx1、GmSN1、Glyma.14G204500、Glyma.14G204600、Glyma.14G204700等参与大豆对SMV的抗性,属于正调控因子;而GmEF1A和GmeIF5A等则增加大豆对SMV的易感性,为负调控因子。在综合SMV抗病基因的相关研究基础上,构建了基于Rsv1和Rsv3介导对SMV极端抗性的调控网络模型。Rsv1介导的大豆对SMV极端抗性调控模型的建立为大豆抗SMV信号网络的研究提供了新的方向。Rsv3介导的大豆对SMV极端抗性的主要机制是通过ABA信号的传导,从而使胞间连丝处的胼胝质沉积以抑制病毒从最初侵染的细胞向健康细胞的转移。本文系统综述了SMV抗病基因方面的最新研究成果并对该领域未来的研究方向进行了展望,以期为大豆抗SMV分子设计育种和抗病基因的机理研究提供参考。

关键词: 大豆, 大豆花叶病毒, 抗病基因, 标记定位, 功能研究

Abstract: Soybean mosaic virus disease, caused by soybean mosaic virus (SMV), is one of the most serous pathogens of soybean (Glycine max (L.) Merr.), which give rise to the loss of yield and quality in soybean production worldwide. During the recent decade, the studies on soybean against SMV stress have made some progress, includes the mapping of SMV resistant genes, the functional analysis of candidate resistance genes, and the progress in dissecting the SMV resistant signaling pathways in soybean. There are two kinds of resistance to SMV in soybean, quantitative resistance and qualitative resistance. The quantitative resistance to SMV is controlled by an additive major gene plus additive-dominant polygenes, and the qualitative resistance is mainly controlled by a dominant resistance gene. Research showed that the quantitative trait loci (QTL) were mainly on chromosome 6, 10 and 13. So far, 22 SMV qualitative resistance loci have been successively mapped on soybean chromosome 2, 6, 13 and 14. And most of the physical distance between the markers on both sides of the SMV resistance gene loci is within 1 Mb. Among them, there are 8 gene loci (Rsv4, RSC5, RSC6, RSC7 and RSC8 etc.) located on chromosome 2, 10 loci (Rsv1, Rsv5, RSC3Q, RSC11 and RSC12 etc.) on chromosome 13, 2 loci on chromosome 6 (RSC15 and RSC18) and 14 (Rsv3 and RSC4), respectively. According to the Williams 82 whole genomic sequence (http://www.phytozome.net/soybean), the putative candidate genes of SMV qualitative resistance loci were subsequently narrowed down based on their predicted functions, expression patterns and sequence comparison etc. Among these genes, Glyma.02G121400, Glyma.02G121500, Glyma.02G121600, Glyma.02G121800, Glyma.02G121900, Glyma.02G122000, Glyma.02G122100 and Glyma.02G122200 et al. eight genes were considered potential resistance candidate genes to SMV on chromosome 2; Glyma.06G182600 as the most promising candidate gene on chromosome 6; Glyma.13G184800, Glyma.13G184900, Glyma.13G187900, Glyma.13G190000, Glyma.13G190300, Glyma.13G190400, Glyma.13G190800, Glyma.13G194700, Glyma. 13G195100 et al. nine genes and Glyma.14G204500, Glyma.14G204600, Glyma.14G204700, Glyma.14G205000, Glyma.14G205200, Glyma.14G205300 et al. six genes were the putative candidate genes to SMV on chromosome 13 and 14, respectively. Using virus induced gene silencing (VIGS) and transgenic technology etc. analyzed the functions of the candidate genes. The results showed genes GmHSP40, GmPP2C3a, GmAKT2, GmCnx1, GmSN1, Glyma.14G204500, Glyma.14G204600 and Glyma.14G204700 can participate to SMV resistance in soybean as positive regulator. After knocked down GmEF1A and GmeIF5A, viral accumulation level of SMV and pathogenicity increased. They were considered negative regulator to SMV resistance. Based on the research results of SMV resistance gene, regulated model were built for Rsv1 and Rsv3 mediating extreme resistance (ER) against SMV. Rsv1-mediated ER has provided new insight into the soybean signaling network required for ER against SMV. The primary mechanism of Rsv3-mediated ER against viruses was the inhibition of viral cell-to-cell movement by callose deposition in an ABA signaling-dependent manner. In this report, the research progress on the mapping and function analysis of SMV resistance genes and the future research directions of SMV resistance in soybean are summarized. It will provide a basis for molecular design breeding and mechanism research of resistance genes to SMV in soybean.

Key words: soybean, soybean mosaic virus, resistance gene, marker location, functional research