中国农业科学 ›› 2017, Vol. 50 ›› Issue (16): 3092-3100.doi: 10.3864/j.issn.0578-1752.2017.16.004

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

施氮量对间作小麦蚕豆根系分泌槲皮素和橙皮素的影响

刘英超1,肖靖秀1,汤利1,郑毅1,2

 
  

  1. 1云南农业大学资源与环境学院,昆明650201;2云南省教育厅,昆明650223
  • 收稿日期:2016-12-07 出版日期:2017-08-16 发布日期:2017-08-16
  • 通讯作者: 郑毅,Tel:0871-65166002;E-mail:zhengyi-64@163.com
  • 作者简介:刘英超,E-mail:liuyingchao_1988@163.com
  • 基金资助:
    国家自然科学基金(31460551、31260504)

Effect of Nitrogen Application Rates on Quercetin and Hesperetin Exuded by Roots in Wheat and Faba Bean Intercropping System

LIU YingChao1, XIAO JingXiu1, TANG Li1, ZHENG Yi1, 2   

  1. 1College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201; 2Yunnan Provincial Department of Education, Kunming 650223
  • Received:2016-12-07 Online:2017-08-16 Published:2017-08-16

摘要: 【目的】系统探讨间作条件下,不同施氮水平不同生育期小麦和蚕豆根系分泌槲皮素和橙皮素的动态变化及累积特征,为进一步探明间作增产控病机制提供依据。【方法】通过盆栽试验,采用小麦与蚕豆根系尼龙分隔(MB)和塑料分隔(PB)两种间作种植模式,测定间作小麦蚕豆不同氮水平(低氮1/2N:常规施氮量的一半;常规施氮N;高氮3/2N:常规施氮量的1.5倍)条件下,不同生育期根系分泌槲皮素和橙皮素数量。【结果】施氮水平和间作体系根系不同分隔方式影响作物生物量和根冠比。随着施氮量增加,小麦和蚕豆生物量增加45%—62.5%和3.2%—18.9%,根冠比降低33.8%—47.3%和11.8%—26.9%;与塑料分隔相比,相同施氮水平条件下,作物生长60 d时,尼龙分隔小麦和蚕豆生物量分别提高4.2%—25%、19%—38.6%,随生长天数增加差异逐渐不显著。间作根系不同分隔方式和施氮量均能影响小麦蚕豆根系槲皮素和橙皮素的分泌量。随施氮量增加,小麦蚕豆槲皮素和橙皮素分泌量减少,与低氮条件相比,常规施氮和高氮条件下,小麦槲皮素分泌量减少了23.4%和62.3%,橙皮素分泌量减少了32.2%和64.5%;蚕豆槲皮素分泌量减少了35.4%和44.1%,橙皮素减少了11.9%和23.9%。相同氮水平条件下,尼龙分隔小麦蚕豆槲皮素和橙皮素分泌量高于塑料分隔,低氮和常规施氮条件下,尼龙分隔小麦槲皮素的分泌量分别高于塑料分隔15.3%和27.1%,橙皮素的分泌量分别高于塑料分隔21%和13.7%;蚕豆根系尼龙分隔槲皮素分泌量高于塑料分隔34.6%和56.6%,橙皮素高于塑料分隔16.9%和5.1%;高氮条件下两种根系分隔方式之间差异不显著。【结论】间作根系不同分隔方式影响小麦和蚕豆根系槲皮素和橙皮素的分泌,但这种影响受施氮水平的调控,低氮和常规施氮条件下,尼龙分隔小麦和蚕豆根系槲皮素和橙皮素分泌量高于塑料分隔,高氮条件下差异不显著。

关键词: 小麦, 蚕豆, 间作, 施氮, 槲皮素, 橙皮素

Abstract: 【Objective】The dynamic changes and accumulation characteristics of quercetin and hesperetin at different nitrogen levels and different growth stages of wheat and faba bean intercropping system in order to provide a basis for further investigation of the mechanism of increasing yield and controlling diseases.【Method】 In a pot experiment, mesh barrier (MB) and, polythene barrier (PB) were used to determine the secretion amount of quercetin and hesperetin exuded by roots of wheat and faba bean at different nitrogen levels (1/2N﹕half of the normal application rate; N: conventional application rate; 3/2N: 1.5 times rate of the normal application rate) in intercropping system.【Result】N levels and root separations affected biomass and root-shoot ratio of crops in wheat and faba bean intercropping system. With the increase of nitrogen application, the biomass of wheat and faba bean increased by 45%-62.5% and 3.2%-18.9%, and the root-shoot ratio decreased by 33.8%-47.3% and 11.8%-26.9%, respectively; Compared with the plastic separation, the biomass of nylon separated wheat and faba bean increased by 4.2%-25% and 19%-38.6% at the same nitrogen levels at 60 d. With the growth stages, the differences were not significant. Root separation and nitrogen levels affected quercetin and hesperetin exuded by roots of wheat and faba bean in intercropping system. With the increase of nitrogen application, the secretion amount of quercetin and hesperetin were decreased, compared with low nitrogen conditions, under conventional nitrogen application rate and high nitrogen application rate, quercetin exuded by wheat root decreased by 23.4% and 62.3%, hesperetin decreased by 32.2% and 64.5%, quercetin exuded by faba bean root decreased by 35.4% and 44.1%, hesperetin decreased by 11.9% and 23.9%. At the same nitrogen level, quercetin and hesperetin exuded by nylon separated roots of wheat and faba bean were higher than that of plastic partition. Under the condition of low nitrogen and conventional nitrogen application rates, the secretion of quercetin in nylon-separated wheat root were higher 15.3% and 27.1% than that in plastic, the secretion of hesperetin in nylon-separated wheat root were higher 21% and13.7% than that in plastic; the quercetin secreted by nylon-separated faba bean were higher 34.6% and 56.6% than that of plastic, hesperetin was higher than plastic separated by 16.9% and 5.1%; there was no significant difference between the two root systems under high nitrogen condition.【Conclusion】Root separation affected quercetin and hesperetin secretion amount exuded by wheat and faba bean roots, but this effect was controlled by nitrogen application levels, under the conditions of low nitrogen and conventional nitrogen application rates, quercetin and hesperetin that exuded by nylon-separated root in wheat and faba bean intercropping were higher than that of plastic partition, the difference was not significant under high nitrogen condition.

Key words:  wheat, faba bean, intercropping, nitrogen application, quercetin, hesperetin