中国农业科学 ›› 2017, Vol. 50 ›› Issue (14): 2826-2836.doi: 10.3864/j.issn.0578-1752.2017.14.018

• 畜牧·兽医·资源昆虫 • 上一篇    下一篇

基于表达谱芯片挖掘鸡骨骼肌不同类型肌纤维的差异表达基因

束婧婷,姬改革,单艳菊,章明,肖芹,屠云洁,盛中伟,张笛,邹剑敏   

  1. 江苏省家禽科学研究所,江苏省家禽遗传育种重点实验室,江苏扬州 225125
  • 收稿日期:2016-07-25 出版日期:2017-07-16 发布日期:2017-07-16
  • 通讯作者: 邹剑敏,E-mail:jqszjm@163.com
  • 作者简介:束婧婷,E-mail:shujingting@163.com
  • 基金资助:
    国家自然科学基金(31301967,31572358)、现代农业产业技术体系建设专项资金(CARS-42-G03)、江苏省重点研发计划(现代农业)(BE2015344)、江苏省农业自主创新资金(CX(15)1009)、江苏省自然科学基金(BK20161322)、江苏现代农业(肉鸡)产业技术体系集成创新中心(首席专家)(SXGC[2017]254)

Analysis of Differential Expression Genes Between Different Myofiber Types in Chicken Skeletal Muscle Based on Gene Expression Microarray

SHU JingTing, JI GaiGe, SHAN YanJu, ZHANG Ming, XIAO Qin, TU YunJie, SHENG ZhongWei, ZHANG Di, ZOU JianMin   

  1. Jiangsu Institute of Poultry Science,Key laboratory for Poultry Genetics and Breeding of Jiangsu Province, Yangzhou 225125
  • Received:2016-07-25 Online:2017-07-16 Published:2017-07-16

摘要: 【目的】肌纤维类型的差异是直接影响肌肉生长发育和肉品质的重要因素,红肌纤维比例高的肌肉肉品质要显著优于白肌纤维比例高的肌肉,然而,目前对于鸡骨骼肌纤维类型形成及转换的分子调控机制尚不明确。本究以中国优良的地方品种清远麻鸡为研究对象,首次对其骨骼肌中不同类型肌肉的转录组差异进行了研究,以期挖掘在鸡肌纤维生成和类型转换中发挥调控作用的关键因子。【方法】采用Agilent鸡全基因组表达谱芯片对清远麻鸡骨骼肌表型差异较大的比目鱼肌和趾长伸肌中与肌纤维类型组成和转换相关的候选基因进行系统筛查,采用荧光定量PCR对芯片筛选出的差异表达基因进行验证,采用慢病毒质粒包装系统构建特异靶向鸡PPARGC1A基因的RNA干扰慢病毒载体进行基因功能研究。【结果】芯片结果共发现差异倍数在2倍及以上的基因1 224个(P<0.05, FC≥2),以趾长伸肌作为参照,比目鱼肌中上调基因为654个,下调基因为570个,尽管芯片和荧光定量PCR两种方法得出的差异倍数并不完全一致,但所选基因的表达趋势是一致的,表明芯片结果是可靠的。对差异表达基因进行GO(GO ontology)功能分类,共发现了74个显著性GO,主要分为生物学过程、分子功能和细胞组分等3大类。基于KEGG Pathway分析发现,一些已知的与肌纤维类型转换、肌肉发育以及脂质代谢相关的信号通路在两种类型的肌肉中被显著富集。综合差异基因的GO、KEGG Pathway和共表达网络分析,推测PRKAG3, ATP2A2以及PPARGC1A可能是与肌纤维类型性状紧密关联的关键基因。进一步对PPARGC1A基因进行功能研究发现,PPARGC1A基因的敲低,引起了PPP3CA,MEF2C以及SM等慢肌纤维标志基因以及与肌纤维发育与转换相关基因表达水平的显著降低,而快肌纤维标志基因FWM的表达水平则显著上升。【结论】揭示了鸡红肌和白肌两种不同类型肌肉间的转录组差异,证明了PPARGC1A基因能够与钙离子信号通路相关基因协同从而在鸡肌纤维类型组成和转换中发挥着重要作用,从而为中国地方鸡肉品质性状的遗传改良提供一定的理论依据。

关键词: 表达谱芯片, 转录组差异, 肌纤维类型, PPARGC1A,

Abstract: 【Objective】 It has been well documented that myofiber type composition can profoundly influence postnatal muscle growth and meat quality, a higher content of red (oxidative) fibers in muscles exhibits excellent meat quality than muscles contain a high content of white (glycolic) fibers. However, the molecular processes that govern the expression of specific fiber type and the phenotypic characteristics of skeletal muscle remains unclear. In the present study, the transcriptional differential analysis between red and white myofiber types was firstly studied in Qingyuan partridge chickens in order to identify key factors that regulates chicken myofiber composition and transition. 【Method】A global gene expression profiling investigation was conducted to identify differentially expressed genes between red (soleus) and white (extensor digitorum longus) muscle of Qingyuan partridge chickens using the Agilent Chicken Gene Expression Chip. qRT-PCR assays were used to validate the microarray hybridization results, and lentivirural plasmids pack-aging system was used to establish a lentiviral vector for RNA interference of specific targeting chicken PPARGC1A gene to study the function of the target gene. 【Result】 A total of 1224 genes with at least 2-fold differences were identified at the P <0.05 significance level (P <0.05, FC ≥ 2). Compared with the expression of transcripts in EDL, a set of 654 transcripts belonged to the up-regulated group, and another set of 570 transcripts belonged to the down-regulated group in SOL. Although fold changes of the selected genes were not exactly the same between real-time PCR assay and microarray assay, the expression tendencies were highly consistent, suggesting that the data from microarray assay in this study was reliable. A total of 74 significantly different GO terms (P value<0.05) were obtained. These terms were categorized into one of three categories: biological process, molecular function and cellular component. KEGG pathway analysis revealed that some well known pathways affecting muscle fiber transition, muscle development and lipid metabolism were enriched in both types of muscles. The results of the GO, KEGG pathway and gene coexpression network analysis indicated that PRKAG3, ATP2A2 and PPARGC1A might be the key genes related to chicken muscle fiber characteristics, and PPARGC1A was selected for the further functional analysis. Genes involved in the calcium signaling such as PPP3CA and MEF2C as well as MyHC SM isoform were significantly down-regulated, while MyHC FRM isoform was significantly up-regulated by PPARGC1A knockdown after shRNA interference. 【Conclusion】The analysis presented the gene expression profiles and identified DEGs that may be related to the phenotypic differences between red (SOL) and white (EDL) muscles in chickens. Further shRNA analysis demonstrated that PPARGC1A might play an important role in chicken myofiber composition and can co-activate the transcriptional activity of calcium signaling genes. Results of this study will provide new clues to understand the molecular basis of chicken myofiber composition and transition, and also will provide a theoretical basis for improving and controlling meat quality of chickens.

Key words: microarray, differential transcriptional analysis, myofiber types, PPARGC1A, chicken