中国农业科学 ›› 2017, Vol. 50 ›› Issue (14): 2769-2780.doi: 10.3864/j.issn.0578-1752.2017.14.013

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

北疆膜下滴灌玉米年际需水量及耗水规律

翟超,周和平,赵健   

  1. 新疆维吾尔自治区水利管理总站/新疆灌溉中心试验站,乌鲁木齐 830000
  • 收稿日期:2016-09-08 出版日期:2017-07-16 发布日期:2017-07-16
  • 通讯作者: 周和平,E-mail:xjslzhp@126.com
  • 作者简介:翟超,E-mail:494419789@qq.com
  • 基金资助:
    新疆水利科技专项(2013G02)

Experimental Study on Inter-Annual Water Requirement and Water Consumption of Drip Irrigation Maize in North of Xinjiang

ZHAI Chao, ZHOU HePing, ZHAO Jian   

  1. Xinjiang Uygur Autonomous Region Water Resources Management Station/Xinjiang Irrigation Central Experiment Station, Urumqi 830000
  • Received:2016-09-08 Online:2017-07-16 Published:2017-07-16

摘要: 【目的】探索新疆天山北部准噶尔盆地南缘区膜下滴灌玉米年际需水量、气象因素、水分生产率、作物系数以及生长、生理动态等变化特征,为调整区域作物种植结构,高效节水提供理论依据。【方法】在新疆灌溉中心试验站,通过2013—2015年3年的旱棚灌溉试验,分析4种不同灌水定额300、375、450、525 m3·hm-2(分别用T1、T2、T3、T4表示)玉米年际内和年际间耗水规律、作物系数及生长、生理指标变化,采用相关分析方法,探明各气象因素与玉米需水量的相关关系,确定影响玉米需水量变化的主要气象因素。【结果】年际内各处理玉米总耗水量、生育阶段耗水量随灌水量增加而增大,2013年各处理总耗水量为202.69、243.22、317.70、366.99 mm;2014年各处理总耗水量为293.81、372.18、466.69、537.13 mm;2015年各处理总耗水量为326.84、401.31、490.76、569.33 mm。年际间,2015年度各处理总耗水量比2014年多5.66%、4.90%、7.26%、10.11%,比2013年多35.54%、35.26%、39.39%、37.98%;2014年度各处理总耗水量比2013年多31.68%、31.92%、34.65%、31.01%。2015年平均温度比前两年高2.6%—3.3%,有效降雨高30.4%—31.2%,相对湿度高11.5%—12.5%。平均温度对玉米播种至灌浆生长期需水量影响突出,线性回归方程的决定系数均达到0.98。玉米产量随灌水量的增加呈先增后减趋势,经优化分析玉米生育期灌水量为3 570—6 370 m3·hm-2,产量可达13 061—14 929 kg·hm-2。水分生产率随灌水量增加而降低,变幅5.92—1.75 kg·m-3之间。随着灌水定额增加而增大,作物系数在0.51—1.18之间变化,3年内作物系数在灌浆—成熟阶段最大,其值为1.01,播种—出苗作物系数最小,其值为0.33。【结论】年际内玉米各处理总耗水量差异显著,各生育阶段耗水量在拔节—抽雄、抽雄—灌浆、灌浆—成熟阶段差异显著。年际间各处理总耗水量变化差异显著,各处理生育阶段耗水量在抽雄—灌浆、灌浆—成熟阶段差异显著。气象因素中平均温度、有效降雨、相对湿度呈逐年增长趋势,太阳辐射、风速、平均温度与需水量成正相关,相对湿度与需水量成负相关。在出苗—拔节阶段,主要气象影响因素是太阳辐射和风速;在拔节—抽雄阶段,主要气象影响因素是相对湿度和平均温度;在抽雄—灌浆阶段,主要气象影响因素是平均温度。平均温度对玉米生育阶段需水量影响最大。玉米产量与全生育期灌水量成二次抛物线关系。玉米作物系数全生育期呈现单峰值变化,峰值出现在抽雄—灌浆期。生育期内玉米株高随灌水量增大而增加,全生育期呈单峰变化,峰值在抽雄期。叶面积指数峰值出现在灌浆期,叶绿素峰值出现在抽雄期。

关键词: 膜下滴灌, 需水量, 气象因素, 水分利用效率, 作物系数

Abstract: 【Objective】 The objective of this experiment is to explore the annual water demand of maize, meteorological factors, water productivity, crop coefficient and characteristics of growth and physiological dynamics of maize cultivated by using drip irrigation under membrane in the northern Tianshan area in the south edge of Zhunggar Basin in Xinjiang, and to provide a theoretical basis for adjusting regional crop planting structure and saving water.【Method】At the Xinjiang Irrigation Center Experimental Station, Four different irrigation quotas of 300, 375, 450, and 525 m3·hm-2 (denoted by T1, T2, T3, T4, respectively) were analyzed in a 3-year irrigation test carried out in 2013-2015. The correlations between the meteorological factors and the water demand of maize were studied by using the correlation analysis method to determine the water requirement, the crop coefficient, the growth index and the physiological index of intercropped maize. Changes of the main meteorological factors were also studied. 【Result】The total water consumption of maize in the interannual period increased with the increase of irrigation amount. The total water consumption in different treatments was 202.69, 243.22, 317.70 and 366.99 mm in 2013, that was 293.81, 372.18, 466.69, and 537.13 mm in 2014, and that was 326.84, 401.31, 490.76 and 569.33 mm in 2015, respectively. The total annual water consumption in 2015 was 5.66%, 4.90%, 7.26% and 10.11% higher than that in 2014, 35.54%, 35.26%, 39.39% and 37.98% higher than that in 2013. In 2014, water consumption was 31.68%, 31.92%, 34.65% and 31.01% higher than that in 2013. The average temperature in 2015 was 2.6%-3.3% higher than that in the previous two years; the effective rainfall was 30.4%-31.2% more than that in the previous two years, and the relative humidity was 11.5%-12.5% higher. The average temperature had a significant effect on the water demand from sowing to grain filling, and the coefficient of determination of linear regression equation was 0.98. The irrigation amount in the growing period was 3 570-6 370 m3·hm-2, and the yield was 13 061-14 929 m3·hm-2. The yield of maize was increased first and then decreased with the increase of irrigation amount. Water productivity decreased with the increase of irrigation volume, ranging from 5.92 to 1.75 kg·m-3. With the irrigation quota increasing, the crop coefficient varied from 0.51 to 1.18. The crop coefficient in the three years was the highest at the grain filling-maturing stages, and its value was 1.01. The sowing-emergence coefficient was the smallest.【Conclusion】 There were significant differences in the total water consumption of maize in the inter-annual period, and the water consumption in the growth period was significant at the stages of jointing-tasseling, tasselling-grouting, and grouting-maturing. There were significant differences in the total water consumption between treatments at different stages, and the water consumption at each growth stage was significantly different between tassel-filling stage, filling stage and maturity stage. The average temperature, effective rainfall and relative humidity of meteorological factors are increasing year by year. Solar radiation, wind speed and average temperature are positively correlated with water demand, and relative humidity is negatively correlated with water requirement. At the jointing-tapping stage, the main meteorological factors are relative humidity and average temperature; At the tassel-grouting stage, the main meteorological factors are the average temperature. The main meteorological factors are solar radiation and wind speed. The average temperature had the greatest influence on water requirement in the maize growing period. The relationship between maize yield and irrigation amount in the whole growth period is quadratic parabola. The whole growth period of maize showed a single-peak change, and the peak appeared at tassel-filling stage. During the growing period, the plant height of maize increased with the increase of irrigation amount, the whole growth period showed a single peak change, and the peak value was at tasseling stage. The peak value of leaf area index appeared at grain filling stage, and chlorophyll peak appeared at tasseling stage.

Key words: drip irrigation under film, water demand, meteorological factor, water use efficiency, crop coefficient