中国农业科学 ›› 2020, Vol. 53 ›› Issue (7): 1287-1308.doi: 10.3864/j.issn.0578-1752.2020.07.001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦远缘杂交现状、抗病基因转移及利用研究进展

刘成,韩冉,汪晓璐,宫文萍,程敦公,曹新有,刘爱峰,李豪圣,刘建军   

  1. 山东省农业科学院作物研究所/农业部黄淮北部小麦生物学与遗传育种重点实验室/小麦玉米国家工程实验室,济南 250100
  • 收稿日期:2019-07-31 接受日期:2019-11-14 出版日期:2020-04-01 发布日期:2020-04-14
  • 作者简介:刘成,E-mail:lch6688407@163.com
  • 基金资助:
    泰山学者工程专项经费(tsqn201812123);山东省良种工程(2019LZGC016);山东省自然科学基金(ZR2017MC004)

Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization

Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU   

  1. Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang-Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan 250100
  • Received:2019-07-31 Accepted:2019-11-14 Online:2020-04-01 Published:2020-04-14

摘要:

小麦近缘植物中含有丰富的抗病、抗逆和抗虫等基因,是小麦育种的优异基因源。通过远缘杂交可以将近缘植物优异基因转移给小麦,创制包括双二倍体或部分双二倍体、附加系、代换系和易位系等在内的小麦-近缘植物异染色体系。这些含小麦近缘植物血缘的异染色体系是研究物种染色体行为与进化、基因定位与作图的重要素材,也是拓宽小麦的遗传基础、抵御小麦重要病虫害、增加小麦产量和提升小麦品质的重要物质基础。为了更加清晰地了解小麦远缘杂交概况及小麦近缘植物抗病基因向小麦的转移,也为今后小麦远缘杂交研究和种质资源的开发利用提供参考,文中对小麦族物种分类、小麦远缘杂交的定义与意义、小麦族山羊草属、黑麦属、偃麦草属、簇毛麦属、冰草属、大麦属、披碱草属、赖草属、新麦草属以及旱麦草属物种与小麦远缘杂交现状和异染色体系创制情况进行了概括,并对来源于小麦近缘植物被正式命名的17个抗条锈病基因、35个抗叶锈病基因、30个抗秆锈病基因、41个抗白粉病基因、3个抗赤霉病基因、1个抗麦瘟病基因、1个抗叶枯病基因、1个抗颖枯病基因、4个抗褐斑病基因、2个抗眼斑病基因、1个抗梭条花叶病基因、2个抗线条花叶病基因和2个抗禾谷类黄矮病基因向小麦的转移情况及其所在染色体的位置信息进行了归纳。小麦-黑麦1RS·1BL易位系、1RS·1AL易位系和小麦-偏凸山羊草2NS/2AS易位系等抗病优良种质的育成与利用在世界小麦育种史上做出了突出贡献,然而,这仅仅得益于对少数抗病基因的利用。与目前已经被命名的基因数量相比,被利用到小麦育种中的抗病基因相对较少。文中分析了当前已命名抗病基因利用情况比例偏低的原因,并对今后如何利用这些抗病基因提出了建议。同时,还列举了已克隆的源自小麦近缘植物的抗病基因,并对克隆这些基因的方法以及今后可能的研究热点进行了分析,认为加强无遗传累赘的小麦-近缘植物易位系的创制与应用仍可能是今后小麦育种材料创新与新品种培育的一个重要发力点。

关键词: 小麦, 远缘杂交, 异染色体系, 抗病基因, 衍生品种

Abstract:

Wheat alien species are vast reservoir of diversity for disease and pest resistance as well as stress tolerance, which are excellent gene sources for wheat breeding. Through wide hybridization, the genes of alien species could be transferred to wheat to create wheat-alien chromosome lines such as amphiploids or partial amphiploids, additions, substitutions and translocation lines. These genetic stocks could be utilized to study chromosome behavior and genome evolution, mapping genes, and diversifying the genetic basis of wheat for diseases and pest resistance, as well as yield and quality improvement. In order to understand the progress of wheat wide hybridization and useful gene transfer from alien species to wheat, in this paper, the classification of the tribe Triticeae, the definition and significance of wheat wide hybridization, alien transfers progress from species belonging to genera Aegilops, Secale, Thinopyrum, Dasypyrum, Agropyron, Hordeum, Elymus, Leymus, Psathyrostachys and Eremopyrum to wheat have been summarized and discussed. To date, the official designated genes originated from wheat alien species include 17 stripe rust resistance genes, 35 leaf rust resistance gens, 30 stem rust resistance genes, 41 powdery mildew resistance genes, 3 Fusarium head blight-resistance genes, one wheat blast resistance gene, one Septoria tritici blotch resistance genes, one Septoria nodorum blotch resistance gene, 4 tan spot resistance genes, 2 eyespot resistance genes, one wheat spindle streak mosaic virus resistance gene, 2 wheat streak mosaic virus resistance genes and 2 cereal yellow dwarf resistance genes. Names and the chromosomal locations of these disease resistance genes were inducted. Moreover, the utilization of these genes in wheat breeding has also been reviewed and summarized. In the history of world wheat breeding, disease resistant germplasms such as wheat-rye 1RS·1BL translocation, 1RS·1AL translocation and wheat-Aegilops ventricosa 2NS/2AS translocation have made outstanding contributions. However, this only benefited from the utilization of a few disease resistant genes. Compared to the number of the designated genes, relatively few disease-resistant genes have been used in wheat breeding. In this paper, the limiting factors for the underutilization are discussed. Suggestions on how to use these disease-resistant genes in the future are put forward. Meanwhile, the cloned disease-resistant genes from wheat alien species are listed. The methods of cloning these genes and the possible research hotspots in the future are also analyzed. It is believed that the development and application of wheat-wild species translocation lines without genetic drag may be an important driving force for material innovation and variety breeding in the future.

Key words: wheat, wild hybridization, chromosome line, disease resistance gene, derived varieties