中国农业科学 ›› 2020, Vol. 53 ›› Issue (5): 929-941.doi: 10.3864/j.issn.0578-1752.2020.05.006

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

白菜型冬油菜萌动种子低温春化的生理生化特征

徐春梅,邹娅,刘自刚(),米文博,徐明霞,董小云,曹小东,郑国强,方新玲   

  1. 甘肃农业大学农学院/甘肃省油菜工程与技术研究中心/甘肃省干旱生境作物学重点实验室/甘肃省作物遗传改良与种质创新重点实验室, 兰州 730070
  • 收稿日期:2019-08-07 接受日期:2019-11-03 出版日期:2020-03-01 发布日期:2020-03-14
  • 通讯作者: 刘自刚
  • 作者简介:徐春梅,E-mail:1403934875@qq.com。
  • 基金资助:
    国家自然科学基金(31660404);国家重点基础研究发展计划(2018YFD0100500);甘肃省高校科研成果转化培育项目(2018D-13);甘肃省现代农业产业技术体系建设专项资金(17ZD2NA016-4)

Physiological and Biochemical Characteristics of Low Temperature Vernalization of Germinating Seeds of Brassica rapa

XU ChunMei,ZOU Ya,LIU ZiGang(),MI WenBo,XU MingXia,DONG XiaoYun,CAO XiaoDong,ZHENG GuoQiang,FANG XinLing   

  1. Agronomy College, Gansu Agricultural University/Gansu Rapeseed Engineering and Technology Research Center/Key Laboratory of Arid Land Crop Science in Gansu Province/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070
  • Received:2019-08-07 Accepted:2019-11-03 Online:2020-03-01 Published:2020-03-14
  • Contact: ZiGang LIU

摘要:

【目的】探讨白菜型冬油菜萌动种子低温春化的可能性,以及萌动种子春化过程其生理生化状态和植株结实性等表型变化特征,为白菜型冬油菜人工加代繁育和加速育种进程提供理论基础。【方法】以3个不同感温性的白菜型冬油菜品种为材料,于4℃对油菜萌动种子进行春化处理,春化处理过程中(0、20、30、40、50和60 d)测定萌动种子的硝酸还原酶、抗氧化物酶活性、渗透调节物、丙二醛含量等生理生化指标;同时播种各春化处理萌动种子,观察记录种子形成植株的生育期进程、测定植株结实性能等。【结果】随着春化处理时间的增加,白菜型冬油菜萌发种子形成的植株春化率、初花期株高、成熟期株高、一次分枝数、单株角果数、角果长、角粒数、单株产量等总体呈逐渐升高趋势;春化处理前期(0—40 d),植株结实性能在不同品种间表现较明显差异,春化时间增加后(50—60 d),不同品种结实能力虽略有差异,但均无显著差异水平。回归分析结果显示,在4℃条件下,强冬性冬油菜陇油7号萌动种子完全春化(春化率>95%)需处理76.9 d,陇油9号和天油4号分别为54.0和39.4 d。相关分析结果表明,春化率与株高、结实性能等各表型性状均呈极显著正相关,其中与初花期株高、成熟期株高相关系数最大为0.947和0.985,表明白菜型冬油菜春化程度显著影响着植株株高、结实性能等。随低温春化时间增加,白菜型冬油菜萌动种子硝酸还原酶、超氧化物歧化酶、过氧化物酶、丙二醛、可溶性蛋白、可溶性糖呈先升高后降低的趋势,过氧化氢酶活性呈不断降低趋势。与对照(未低温处理的萌动种子)相比,低温春化处理的陇油7号、陇油9号萌动种子GA3含量均明显降低,春化30 d的天油4号萌动种子GA3含量明显比对照增加。与对照相比,春化处理的冬油菜萌动种子IAA含量均明显增加(陇油9号春化40 d处理除外),其中,春化50 d的天油4号萌动种子IAA含量比对照增加197.0%。陇油7号春化处理的萌动种子ABA含量比对照明显增加。【结论】白菜型冬油菜萌动种子可以感受低温使其完成春化作用,品种春化所需低温时间取决于品种冬性强弱;低温春化过程中,白菜型冬油菜萌动种子生理生化状态发生了一些变化,并最终影响植株的生长发育及其结实性能。

关键词: 白菜型冬油菜, 萌动种子, 表型特征, 生理生化

Abstract:

【Objective】 To explore the possibility of low temperature through vernalization to the germination of Brassica rapa, and the phenotypic changes of seed physiology and biochemistry and plant set during vernalization, so as to provide theoretical basis for artificial breeding and accelerating breeding process of B. rapa. 【Method】 Three different temperature-sensitive of B. rapa were used as materials, the germinated seeds were placed in 4℃ of low temperature for vernalization treatment. During the vernalization process (0 d, 20 d, 30 d, 40 d, 50 d, 60 d) the physiological and biochemical indexes such as nitrate reductase, antioxidant enzyme activity, osmotic regulator and malondialdehyde content of the germinated seeds were measured. Simultaneously germinated seeds of each vernalization treatment, the growth period of the seed formation plant was observed, and the seed-setting performance of the plants were measured. 【Result】 With the increase of vernalization time, the vernalization rate (V), plant height (FPH), mature plant height (MPH) and primary branch number (PB), the number of pods per plant (SP), the length of pods (LS), the number of pods (SS) and the yield per plant (YP) of germinated seeds of B. rapa showed an increasing trend; the early stage of vernalization (0-40 d), the plant's seed-setting performance showed significant differences among different varieties. After the vernalization time increased (50-60 d), the seed-setting ability of different varieties was slightly difference, but they were not significantly difference. The results of regression analysis showed that the germination seeds of strong winter rapa Longyou 7 at 4℃ were completely vernalized (springing rate >95%) and need to be treated 76.9 d, Longyou 9 and Tianyou 4 were 54.0 d, 39.4 d, respectively. Correlation analysis showed that the vernalization rate was extremely significant positive correlated with plant height and seed-setting performance and other phenotypic traits. The correlation coefficient between vernalization rate with average first flower plant height and average mature plant height was 0.947 and 0.985, which indicated that vernalization degree of winter B. rapa significantly affected plant height and seed-setting performance. With the increase of low temperature vernalization time, the germinated seeds of winter B. rapa with nitrate reductase (NR), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), soluble protein (SP), Soluble sugar (SS) were increased first and then decreased, and the activity of catalase (CAT) decreased continuously. Compared with the control (the germinated seeds not treated at low temperature), the content of GA3 in the germinated seeds of Longyou 7 and Longyou 9 decreased significantly at the low temperature vernalization treatment, and the content of GA3 in the germinated seeds of Tianyou 4 was significantly higher than that of the control at 30 days. Compared with the control, the content of IAA in the winter rapeseed germinated in vernalization increased significantly (except for the treatment 40 days of Longyou9). Among them, the content of IAA in the seeds treated with vernalization for 50 days of Tianyou 4 increased by 197.0% compared with the control. The ABA content of the Longyou 7 was significantly increased compared with the control. 【Conclusion】 The germination seeds of winter Brassica rapa can be perceived the low temperature to complete the vernalization. The low temperature time required for vernalization of the variety depends on the winter strength. During the process vernalization of low temperature, the physiological and biochemical status is occurring some changes of the seed of winter B. rapa, and ultimately affect the growth and development of the plant and its seed setting performance.

Key words: Brassica rapa, germination seed, phenotypic characteristics, physiological and biochemical