中国农业科学 ›› 2019, Vol. 52 ›› Issue (23): 4201-4214.doi: 10.3864/j.issn.0578-1752.2019.23.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

青稞种质资源表型性状的遗传多样性分析及综合评价

白羿雄1,2,郑雪晴1,姚有华1,姚晓华1,吴昆仑1()   

  1. 1 青海大学农林科学院/青海省农林科学院/青海省青稞遗传育种重点实验室/国家麦类改良中心青海青稞分中心,西宁 810016
    2 西北农林科技大学农学院,陕西杨凌712100
  • 收稿日期:2019-05-28 接受日期:2019-07-24 出版日期:2019-12-01 发布日期:2019-12-01
  • 通讯作者: 吴昆仑
  • 作者简介:白羿雄,E-mail:yixiongbai@163.com
  • 基金资助:
    青海省农林科学院创新基金重点研发项目(2019-NKY-01);国家现代农业产业技术体系(CAS-05);青海大学中青年科研基金项目(2017-QNY-2);西藏自治区重大科技专项(XZ201801NA01-014)

Genetic Diversity Analysis and Comprehensive Evaluation of Phenotypic Traits in Hulless Barley Germplasm Resources

BAI YiXiong1,2,ZHENG XueQing1,YAO YouHua1,YAO XiaoHua1,WU KunLun1()   

  1. 1 Academy of Agriculture and Forestry of Qinghai University/Qinghai Academy of Agriculture and Forestry Sciences/Qinghai Provincial Key Laboratory of Hulless Barley Genetics and Breeding/Qinghai Hulless Barley Sub-center of National Triticeae Improvement Center, Xining 810016
    2 College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi
  • Received:2019-05-28 Accepted:2019-07-24 Online:2019-12-01 Published:2019-12-01
  • Contact: KunLun WU

摘要:

【目的】解析青稞种质资源表型形状的遗传多样性关系及筛选综合性状优异的青稞种质,可为青稞育种及重要性状深入研究提供理论依据。【方法】通过对205份青稞15个表型性状采用Shannon-Wiener’s多样性指数进行遗传多样性分析。分析参试青稞种质15个表型性状在西宁试验点和海北试验点的频次分布规律。对各性状利用相关性分析以明确性状间联系;对参试种质进行聚类分析以明确其分类情况。利用主成分分析构建青稞种质综合评价体系,并通过线性回归分析对该体系进行验证。依据综合评价及丰产稳产性分析结果以筛选优异青稞种质。【结果】倒伏率遗传变异程度最丰富而重心位置遗传变异最匮乏,海北点遗传变异程度高于西宁点。穗重遗传多样性最丰富,倒伏率遗传单一性最高。除倒伏率外各性状指标均呈正态或偏态分布,分布频次呈中间高两边低的分布趋势;穗长、穗重在各基因型中呈正态分布。各表型性状受环境、基因型、年份影响极显著,且各表型性状的基因型与环境(G×E)、基因型与年份(G×Y)、基因型×环境×年份(G×E×Y)的互作效应均呈极显著。青稞根系、茎秆和穗部组织内各指标间存在显著相关性,且各组织间的农艺性状也存在显著相关性。根系发达、茎部抗折力高的青稞种质其机械固持能力强,倒伏率低;严重倒伏会限制青稞种质穗部生长发育,使穗长变短、穗粒数减少、籽粒变小、穗重变轻、进而使产量锐减。聚类结果表明参试种质可分为三类,第一类是高重心、易倒伏、其余性状居中的种质;第二类是矮秆、低重心且其余性状表现良好的优异种质;第三类是株高较高、根系欠发达、茎部易折、穗部性状表现差的种质。结合F值和丰产稳产性分析结果筛选出综合性状表现优异且有较高丰产稳产性的青稞种质5份。【结论】参试青稞种质资源的遗传多样性丰富;穗长、穗重在各基因型中呈正态分布,除倒伏率外,其余12个性状在基因型中呈偏态分布;根干重、重心位置、茎秆壁厚、茎粗、茎秆强度、穗长、穗粒数、产量8个指标可作为核心种质评价的综合指标。

关键词: 青稞, 表型性状, 遗传多样性, 聚类分析, 综合评价

Abstract:

【Objective】The genetic diversity in the hulless barley (Hordeum vulgare L. var. nudum Hook. f.) germplasm resources can be screened to improve phenotypic appearance traits. 【Method】Shannon-Wiener diversity index was used to analyze the genetic diversity of 15 phenotypic traits in 205 hulless barley accessions. The distribution frequency of all phenotypic traits in test germplasm resources were analyzed, which contained the data of Xining and Haibei experiment point. Correlation analysis was used to identify the relationship among all traits; cluster analysis was carried out to clarify its classification of the tested germplasm. Principal component analysis was used to construct a comprehensive evaluation system of hulless barley germplasm resources, and the system was verified by linear regression analysis. Screening excellent hulless barley germplasm resources based on the results of comprehensive evaluation and high yield and stability analysis. Correlation analysis, principal component analysis, cluster analysis and high yield and stability analysis were used to evaluate the germplasms. 【Result】The genetic variation level of lodging rate was the richest, the genetic variation level of the center of gravity is the most deficient, the genetic variation of the Haibei test plot showed higher than that of Xining point. The genetic diversity of panicle weight was the most abundant, the genetic uniformity of lodging rate was the highest. Except for the lodging rate, the additional traits showed normal or skewed distribution, and the distribution frequency showed the trend of higher middle and lower sides. The spike length and spike weight showed normally distributed in each genotype. Spike length and panicle weight have normal distributions among the hulless barley accessions. The phenotypic traits showed highly significant differences related to environmental, genotypes, and years factors. Genotype and environment (G×E) factors, genotype and year (G×Y) factors and genotype × environment× year (G×E×Y) interactions produced highly significant differences in the phenotypic traits. There was a significant correlation between the indicators among the roots, stems and panicles of the hulless barley, and there was also a significant correlation between the agronomic traits among the tissues. Well-developed root system, greater stem bending resistance, and stronger mechanical retention, reduced the lodging. Susceptibility to lodging of hulless barley limits the growth and development of spikes and reduce spike length, grain number per ear, grain size, and ear weight. This greatly reduces hulless barley yield. The clustering results demonstrated that the germplasm could be divided into three categories. Category one had a high center of gravity and was susceptible to lodging, but the remaining traits were intermediate. Category two contained germplasm with good agronomic qualities such as dwarf, stalk with a low center of gravity and other useful traits. Category three contained germplasm with high plant height, underdeveloped roots, easily to folded stems, and poor panicle performance. The F value results and yield stability analysis identified five types of barley hull germplasms with excellent overall traits, high yield and stability. 【Conclusion】 High genetic diversity exists in the barley germplasm resources. The spike length and spike weight were normally distributed within each genotype. With the exception of the lodging rate, 12 other traits had skewed distributed within the genotypes. Eight traits including root dry weight, center of gravity, stem wall thickness, main stem diameter, stem strength, spike length, kernels per spike and yield are useful indicators for evaluating barley germplasms.

Key words: hulless barley, phenotypic traits, genetic diversity, cluster analysis, comprehensive evaluation