中国农业科学 ›› 2018, Vol. 51 ›› Issue (21): 4007-4019.doi: 10.3864/j.issn.0578-1752.2018.21.001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

植物RNA结合蛋白研究进展

张在宝1,2(),李婉杰1,李九丽1,张弛1,胡梦辉1,程琳1,袁红雨1,2   

  1. 1信阳师范学院生命科学学院,河南信阳464000
    2信阳师范学院河南省茶学重点实验室,河南信阳464000
  • 收稿日期:2018-06-04 接受日期:2018-08-08 出版日期:2018-11-01 发布日期:2018-11-01
  • 通讯作者: 张在宝
  • 基金资助:
    河南省教育厅项目(18A180031);河南省自然科学基金(182300410063);信阳师范学院南湖学者计划

The Research Progress of Plant RNA Binding Proteins

ZaiBao ZHANG1,2(),WanJie LI1,JiuLi LI1,Chi ZHANG1,MengHui HU1,Lin CHENG1,HongYu YUAN1,2   

  1. 1College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan
    2Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, Henan
  • Received:2018-06-04 Accepted:2018-08-08 Online:2018-11-01 Published:2018-11-01
  • Contact: ZaiBao ZHANG

摘要:

在真核生物中,RNA结合蛋白(RBPs)是一类重要的转录后调控因子,通过与RNA结合形成核糖核蛋白复合物来调节真核生物细胞的RNA代谢过程,包括RNA的转移、修饰、翻译及降解。RNA结合蛋白广泛存在于动物、植物以及微生物中,约占真核生物基因编码蛋白的2%—8%。近年来,对RNA结合蛋白的研究已成为备受关注的热点。RNA结合蛋白与人类健康密切相关,许多RNA结合蛋白的突变都会导致人类疾病。RNA结合蛋白(尤其是三角状五肽重复区蛋白)不仅在植物中大量存在,而且作为重要的调控因子在RNA代谢、生长发育以及应激反应过程中发挥重要作用,这已引起人们的广泛关注。相对于动物RNA结合蛋白的大量研究,植物RNA结合蛋白的功能研究还相对较少。文中详细总结了近几年植物RNA结合蛋白的功能研究、作用机制以及同其他RNA结合蛋白之间的相互关系,并在此基础上重点阐述了5类RNA结合蛋白家族在植物中的功能研究进展,包括富含丝氨酸-精氨酸的RNA结合蛋白(SR蛋白)、富含甘氨酸的RNA结合蛋白(GR-RBPs)、三角状五肽重复区蛋白(PPR蛋白)、DEAD-box RNA解旋酶(DEAD-box RHs)以及RNA分子伴侣。主要在拟南芥、水稻和小麦等模式植物或经济作物中对上述5类植物RNA结合蛋白的功能基因进行介绍,总结每类RBPs在植物的RNA代谢、生长发育以及逆境胁迫响应过程中的重要作用,从而为基础研究和农业生产实践提供了重要的理论依据。在这5类RBPs中,SR蛋白主要作为重要的选择性剪接因子参与RNA代谢,从而在植物的生长发育和胁迫响应中发挥关键的调节作用;许多GR-RBPs家族成员具有功能多样性,一方面可能通过介导植物激素信号通路来调节植物的胁迫耐受性和各种生长发育过程;另一方面作为RNA分子伴侣参与RNA折叠反应并因此在低温和干旱等非生物胁迫响应过程中发挥关键作用。PPR蛋白主要参与线粒体和叶绿体的RNA代谢,调节植物的胁迫响应和生长发育过程;DEAD-box RHs作为细胞核和细胞器重要的RNA剪接因子,在植物生长发育以及非生物胁迫响应中发挥多种功能;作为非特异性RNA结合蛋白的RNA分子伴侣,通过参与RNA折叠反应而维持RNA分子的正常功能。此外,前4类RNA结合蛋白中有许多RBPs具有RNA分子伴侣活性,这使得同一蛋白可能具有功能多样性,从而赋予植物在逆境下具有较强的胁迫耐受性。

关键词: RNA结合蛋白, RNA代谢, 植物生长发育, 应激反应

Abstract:

In eukaryotes, RNA-binding proteins (RBPs) are an important class of post-transcriptional regulators that direct and regulate the RNA metabolism. RBPs together with RNA to form ribonucleoprotein complexes have been reported to play critical roles in many RNA processes, including translocation, modification, translation and degradation. RBPs are widely present in animals, plants and microorganisms, accounting for about 2%-8% of the proteins encoded by eukaryotic genes. In recent years, the researches on RNA-binding proteins have become a hot topic. RBPs have been reported to involved in many human diseases by mutation and genetic analysis. The large number of RBPs in plants has also been reported, and they played similar important functions in plant RNA metabolism. However, our understanding of the roles and mechanisms of action of plant RBPs is less well studied than in animals. In this review, we will discuss recent progresses of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development and stress responses. Five classes of plant RBP families were discussed, including serine-arginine-rich RNA-binding proteins (SR proteins), glycine-rich RNA-binding proteins (GR-RBPs), pentatricopeptide repeat proteins (PPR proteins), DEAD-box RNA helicase (DEAD-box RHs) and RNA chaperones. The critical roles of these plant RBPs in RNA metabolism during plant growth, development, and stress responses were summarized. Functions as an alternative splicing factor during RNA metabolism, SR proteins play important roles in plant growth and stress response. GR-RBPs family members displayed functional diversity: Many of them regulate plant stress tolerance and various growth and development processes by mediating plant hormone signaling pathways and others mediate abiotic stress response acting as RNA chaperones. PPR proteins are the most widely studied and they mainly involved in RNA metabolism of mitochondria and chloroplasts. As important RNA splicing factors of cell nuclei and organelles, DEAD-box RHs play variety of functions in plant growth, development and abiotic stress response. RNA chaperones are non-specific RBP that maintain the normal function of RNA molecules by facilitate RNA folding via structural rearrangement of misfolded RNAs.

Key words: RNA binding proteins, RNA metabolism, plant growth and development, stress response